Chuyen de Dinh ly Viet hay

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Cao Xuân Hùng (trang riêng)
Ngày gửi: 15h:54' 25-02-2022
Dung lượng: 852.5 KB
Số lượt tải: 7
Nguồn:
Người gửi: Cao Xuân Hùng (trang riêng)
Ngày gửi: 15h:54' 25-02-2022
Dung lượng: 852.5 KB
Số lượt tải: 7
Số lượt thích:
0 người
lPHẦN I. MỞ ĐẦU
I. LÍ DO CHỌN CHUYÊN ĐỀ
Dạy học giải toán là một trong những vấn đề trọng tâm của dạy học môn Toán ở trường THCS. Đối với học sinh thì giải toán là hoạt động chủ yếu của việc học tập môn Toán. Do vậy việc rèn luyện kỹ năng, phương pháp giải toán cho học sinh là việc làm hết sức cần thiết.
Trong quá trình giảng dạy, người thầy cần rèn luyện cho học sinh những kỹ năng, phương pháp giải toán, sự độc lập suy nghĩ một cách sâu sắc, sáng tạo nhất. Vì vậy đòi hỏi người thầy phải lao động sáng tạo, tìm tòi ra những phương pháp mới và hay để dạy cho học sinh. Từ đó học sinh được trau dồi tư duy logic, sự sáng tạo qua việc giải các bài toán.
Ở chương trình toán 9 học sinh đã được làm quen về định lý Vi – ét và các ứng dụng của định lý Viet. Đây là nội dung quan trọng không thể thiếu trong các kì thi THPT và HSG lớp 9, nó đóng vai trò quan trọng không chỉ trong chương trình toán học lớp 9 mà còn cả trong chương trình toán học THCS.
Song qua việc giảng dạy Toán 9 tại trường T.H.C.S tôi nhận thấy các em vận dụng hệ thức Viét vào giải toán chưa thật linh hoạt, chưa biết khai thác và sử dụng hệ thức Viét vào giải nhiều loại bài toán, trong khi đó hệ thức Viét có tính ứng dụng rất rộng rãi trong việc giải toán.
Đứng trước vấn đề đó, tôi đi sâu vào nghiên cứu đề tài: “Một số dạng toán ứng dụng định lý Vi-ét” với mong muốn giúp cho học sinh nắm vững và sử dụng thành thạo định lý Viét, đồng thời làm tăng khả năng, năng lực học toán và kích thích hứng thú học tập của học sinh.
II. PHẠM VI VÀ MỤC ĐÍCH CỦA CHUYÊN ĐỀ
1. Phạm vi của chuyên đề:
- Phần kiến thức chương IV – đại số lớp 9.
- Áp dụng cho HS đại trà lớp 9.
2. Mục đích của chuyên đề:
- Trao đổi với giáo viên cùng bộ môn về phương pháp giả và một số dạng toán ứng dụng định lý Vi–ét ở lớp 9.
- Giúp học sinh có thêm công cụ và phương pháp giải một số dạng toán ứng dụng định lí Vi-ét.
- Giúp HS có kiến thức chuẩn bị cho kì thi vào lớp 10.
PHẦN II. NỘI DUNG
I. CƠ SỞ LÝ THUYẾT
1. Định lí Vi-ét:
Nếu phương trình ax2 + bx + c = 0 (a ( 0) có 2 nghiệm x1, x2 thì
S = x1 + x2 =
P = x1 . x2 =
* Hệ quả: PT bậc 2: ax2 + bx + c = 0 (*)
- Nếu a + b + c = 0 thì (*) có 1 nghiệm là x1 = 1, nghiệm kia là x2 =
- Nếu a - b + c = 0 thì (*) có 1 nghiệm là x1 = - 1; nghiệm kia là x2 =
2. Định lý đảo:
Nếu có 2 số x1, x2 thoả mãn thì chúng là nghiệm số của phương trình:
t2 - st + p = 0
(Điều kiện ( 2 số x1, x2 là s2 - 4p ( 0)
Chú ý:
* Trước khi áp dụng hệ thức Viet cần tìm điều kiện để phương trình có 2 nghiệm (
* a + b + c = 0 ( x = 1 ; a - b + c = 0 ( x = - 1
* Nếu có: x = ( ; y = ( là nghiệm hệ phương trình thì (, ( là nghiệm của phương trình: t2 - St + P = 0.
II. MỘT SỐ DẠNG TOÁN VỀ ỨNG DỤNG ĐỊNH LÍ VI-ÉT
Dạng 1: Nhẩm nghiệm của phương trình bậc hai
1.1. Dạng đặc biệt: Phương trình bậc hai có một nghiệm là 1 hoặc – 1
Cách làm: Xét tổng a + b + c hoặc a – b + c
Ví dụ 1: Nhẩm nghiệm của các phương trình sau:
a) b)
Giải: a) Ta có: nên phương trình có một nghiệm là , nghiệm còn lại là
b) Ta có: nên phương trình có một nghiệm là , nghiệm còn lại là .
1.2. Cho phương trình bậc hai, có một hệ số chưa biết, cho trước một nghiệm, tìm nghiệm còn lại và chỉ ra hệ số chưa biết của phương trình:
Ví dụ 2: a) Phương trình có một nghiệm bằng 2, tìm p và nghiệm còn lại của phương trình.
b)Phương trình có một nghiệm bằng 5, tìm q và nghiệm còn lại của phương trình
c) Phương trình biết hiệu hai nghiệm
I. LÍ DO CHỌN CHUYÊN ĐỀ
Dạy học giải toán là một trong những vấn đề trọng tâm của dạy học môn Toán ở trường THCS. Đối với học sinh thì giải toán là hoạt động chủ yếu của việc học tập môn Toán. Do vậy việc rèn luyện kỹ năng, phương pháp giải toán cho học sinh là việc làm hết sức cần thiết.
Trong quá trình giảng dạy, người thầy cần rèn luyện cho học sinh những kỹ năng, phương pháp giải toán, sự độc lập suy nghĩ một cách sâu sắc, sáng tạo nhất. Vì vậy đòi hỏi người thầy phải lao động sáng tạo, tìm tòi ra những phương pháp mới và hay để dạy cho học sinh. Từ đó học sinh được trau dồi tư duy logic, sự sáng tạo qua việc giải các bài toán.
Ở chương trình toán 9 học sinh đã được làm quen về định lý Vi – ét và các ứng dụng của định lý Viet. Đây là nội dung quan trọng không thể thiếu trong các kì thi THPT và HSG lớp 9, nó đóng vai trò quan trọng không chỉ trong chương trình toán học lớp 9 mà còn cả trong chương trình toán học THCS.
Song qua việc giảng dạy Toán 9 tại trường T.H.C.S tôi nhận thấy các em vận dụng hệ thức Viét vào giải toán chưa thật linh hoạt, chưa biết khai thác và sử dụng hệ thức Viét vào giải nhiều loại bài toán, trong khi đó hệ thức Viét có tính ứng dụng rất rộng rãi trong việc giải toán.
Đứng trước vấn đề đó, tôi đi sâu vào nghiên cứu đề tài: “Một số dạng toán ứng dụng định lý Vi-ét” với mong muốn giúp cho học sinh nắm vững và sử dụng thành thạo định lý Viét, đồng thời làm tăng khả năng, năng lực học toán và kích thích hứng thú học tập của học sinh.
II. PHẠM VI VÀ MỤC ĐÍCH CỦA CHUYÊN ĐỀ
1. Phạm vi của chuyên đề:
- Phần kiến thức chương IV – đại số lớp 9.
- Áp dụng cho HS đại trà lớp 9.
2. Mục đích của chuyên đề:
- Trao đổi với giáo viên cùng bộ môn về phương pháp giả và một số dạng toán ứng dụng định lý Vi–ét ở lớp 9.
- Giúp học sinh có thêm công cụ và phương pháp giải một số dạng toán ứng dụng định lí Vi-ét.
- Giúp HS có kiến thức chuẩn bị cho kì thi vào lớp 10.
PHẦN II. NỘI DUNG
I. CƠ SỞ LÝ THUYẾT
1. Định lí Vi-ét:
Nếu phương trình ax2 + bx + c = 0 (a ( 0) có 2 nghiệm x1, x2 thì
S = x1 + x2 =
P = x1 . x2 =
* Hệ quả: PT bậc 2: ax2 + bx + c = 0 (*)
- Nếu a + b + c = 0 thì (*) có 1 nghiệm là x1 = 1, nghiệm kia là x2 =
- Nếu a - b + c = 0 thì (*) có 1 nghiệm là x1 = - 1; nghiệm kia là x2 =
2. Định lý đảo:
Nếu có 2 số x1, x2 thoả mãn thì chúng là nghiệm số của phương trình:
t2 - st + p = 0
(Điều kiện ( 2 số x1, x2 là s2 - 4p ( 0)
Chú ý:
* Trước khi áp dụng hệ thức Viet cần tìm điều kiện để phương trình có 2 nghiệm (
* a + b + c = 0 ( x = 1 ; a - b + c = 0 ( x = - 1
* Nếu có: x = ( ; y = ( là nghiệm hệ phương trình thì (, ( là nghiệm của phương trình: t2 - St + P = 0.
II. MỘT SỐ DẠNG TOÁN VỀ ỨNG DỤNG ĐỊNH LÍ VI-ÉT
Dạng 1: Nhẩm nghiệm của phương trình bậc hai
1.1. Dạng đặc biệt: Phương trình bậc hai có một nghiệm là 1 hoặc – 1
Cách làm: Xét tổng a + b + c hoặc a – b + c
Ví dụ 1: Nhẩm nghiệm của các phương trình sau:
a) b)
Giải: a) Ta có: nên phương trình có một nghiệm là , nghiệm còn lại là
b) Ta có: nên phương trình có một nghiệm là , nghiệm còn lại là .
1.2. Cho phương trình bậc hai, có một hệ số chưa biết, cho trước một nghiệm, tìm nghiệm còn lại và chỉ ra hệ số chưa biết của phương trình:
Ví dụ 2: a) Phương trình có một nghiệm bằng 2, tìm p và nghiệm còn lại của phương trình.
b)Phương trình có một nghiệm bằng 5, tìm q và nghiệm còn lại của phương trình
c) Phương trình biết hiệu hai nghiệm
 
















