Các dạng toán 9 hay

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn: St
Người gửi: Cao Xuân Hùng (trang riêng)
Ngày gửi: 23h:23' 29-12-2019
Dung lượng: 7.8 MB
Số lượt tải: 3
Nguồn: St
Người gửi: Cao Xuân Hùng (trang riêng)
Ngày gửi: 23h:23' 29-12-2019
Dung lượng: 7.8 MB
Số lượt tải: 3
Số lượt thích:
0 người
PHẦN ĐẠI SỐ
I. CĂN BẬC HAI - CĂN THỨC BẬC HAI
1. Căn bậc hai số học
Căn bậc hai của một số không âm a là số x sao cho .
Số dương a có đúng hai căn bậc hai là hai số đối nhau: Số dương kí hiệu là , số âm kí hiệu là .
Số 0 có đúng một căn bậc hai là chính số 0, ta viết .
Với số dương a, số đgl căn bậc hai số học của a. Số 0 cũng đgl căn bậc hai số học của 0
Với hai số không âm a, b, ta có: a < b .
2. Căn thức bậc hai
Với A là một biểu thức đại số, ta gọi là căn thức bậc hai của A.
xác định (hay có nghĩa) khi A lấy giá trị không âm.
Dạng 1: TÌM ĐIỀU KIỆN ĐỂ CÓ NGHĨA
có nghĩa có nghĩa A > 0
Bài 1. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f)
Bài 2. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f)
Bài 3. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f) không có
Bài 4. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
a) b) c)
d) e) f)
ĐS: a) b) c) d) hoặc e) hoặc
f) hoặc
Bài 5. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
a) b) c)
d) e) f)
ĐS: a) b) hoặc c) d) e) f)
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
Dạng 2: TÍNH GIÁ TRỊ BIỂU THỨC
Áp dụng:
Bài 1. Thực hiện các phép tính sau:
a) b) c)
d) e) f)
ĐS: a) b) 8 c) d) e) f)
Bài 2. Thực hiện các phép tính sau:
a) b)
c) d)
e) f)
ĐS: a) 6 b) c) 1 d) 4 e) f)
Bài 3. Thực hiện các phép tính sau:
a) b) c)
d) e) f)
ĐS: a) b) c) d)
Bài 4. Thực hiện các phép tính sau:
a) b) c)
d) e)
Dạng 3: RÚT GỌN BIỂU THỨC
Áp dụng:
Chú ý: Xét các trường hợp A ≥ 0, A < 0 để bỏ dấu giá trị tuyệt đối.
Bài 1. Rút gọn các biểu thức sau:
a) b)
c) d)
ĐS: a) 6 b) 2 c) 1 d)
Bài 2. * Rút gọn các biểu thức sau:
a) b) c)
d) e) f)
ĐS:
Bài 3. Cho biểu thức .
a) Với giá trị nào của x thì A có nghĩa?
b) Tính A nếu .
ĐS: a) hoặc b)
Bài 4. Cho 3 số dương thoả điều kiện: . Tính:
ĐS: . Chú ý: ,
,
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
Dạng 4: GIẢI PHƯƠNG TRÌNH
Áp dụng: ; ;
Bài 1. Giải các phương trình sau:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f)
Bài 2. Giải các phương trình sau:
a) b) c)
d) e) f)
ĐS: a) b) c) d) vô nghiệm e) f) vô nghiệm
Bài 3. Giải các phương trình sau:
a) b) c)
d) e) f)
ĐS: a) b) c) vô nghiệm d) e) f) vô nghiệm
Bài 4. Giải các phương trình sau:
a) b) c)
d) e) f)
ĐS: a) b) vô nghiệm c) d) vô nghiệm e)
f)
Bài 5. Giải các phương trình sau:
a) b) c)
d)
ĐS: a) b) c) d)
Bài 6. Giải các phương trình sau:
a) b) c)
d)
ĐS: a) b) vô nghiệm c) d)
II. LIÊN HỆ GIỮA PHÉP KHAI PHƯƠNG VÀ PHÉP NHÂN, PHÉP CHIA
Khai phương một tích:
Nhân các căn bậc hai:
Khai phương một thương:
Chia hai căn bậc hai:
Dạng 1: THỰC HIỆN PHÉP TÍNH
Bài 1. Thực hiện các phép tính sau:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f)
Bài 2. Thực hiện các phép tính sau:
a) b)
c) d)
e) f)
ĐS: Chú ý:
a) b) c) d) e) f)
Bài 3. Thực hiện các phép tính sau:
a) b) c)
d) e) f)
ĐS: a) b) c) 0 d) 2 e) f) 14
Bài 4. Thực hiện các phép tính sau:
a) b) c)
d) e) f)
ĐS: a) –2 b) c) 4 d) 1
Bài 5. Thực hiện các phép tính sau:
a) b)
c)
ĐS: Chứng tỏ . Tính ; ,
Dạng 2: RÚT GỌN BIỂU THỨC VÀ TÍNH GIÁ TRỊ BIỂU THỨC
Bài 1. Rút gọn các biểu thức:
a) b) c)
d) e) f)
ĐS: a) b) c) d) . Tách
e) f)
Bài 2. Rút gọn các biểu thức sau:
a) b)
c)
ĐS: a) b) c) nếu và nếu
Bài 3. Rút gọn và tính:
a) với b) với
c) với d)với
ĐS: a) b) c) d) 2
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
Dạng 3: GIẢI PHƯƠNG TRÌNH
Bài 1. Giải các phương trình sau:
a) b) c)
d) e)
ĐS: a) b) vô nghiệm c) d) e)
Dạng 4: CHỨNG MINH BẤT ĐẲNG THỨC
Bài 1. So sánh các số:
a) và 1 b) và c) và
ĐS:
Bài 2. Cho các số không âm a, b, c. Chứng minh:
a) b) c)
d) e)
ĐS:
Bài 3. Tìm giá trị lớn nhất của các biểu thức sau:
a) b) c)
ĐS: a) b) c)
III. BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI
Với A ≥ 0 và B ≥ 0 thì + Với A < 0 và B ≥ 0 thì
Với A ≥ 0 và B ≥ 0 thì + Với A < 0 và B ≥ 0 thì
Với A.B ≥ 0 và B 0 thì + Với B > 0 thì
Với A ≥ 0 và thì
Với A ≥ 0, B ≥ 0 và A B thì
Dạng 1: THỰC HIỆN PHÉP TÍNH
Bài 1. Thực hiện các phép tính sau:
a) b)
c) d)
e) f)
ĐS: a) b) c) d) e) f)
Bài 2. Thực hiện các phép tính sau:
a) b)
c) d)
e) f)
ĐS: a) b) c) d) e) f) 1
Bài 3. Thực hiện các phép tính sau:
a)
ĐS:
Dạng 2: RÚT GỌN BIỂU THỨC
Bài 1. Rút gọn và tính giá trị biểu thức:
a) , b) ,
c) , d) ,
e) , f) ,
ĐS: a) b) c)
d) e) f)
Dạng 3: GIẢI PHƯƠNG TRÌNH
Bài 1. Giải các phương trình sau:
a) b)
c) d)
e) f)
ĐS: a) b) 290 c) vô nghiệm d) e)
Dạng 4: CHỨNG MINH ĐẲNG THỨC
Bài 1. Cho biểu thức: (với n nguyên dương).
a) Tính .
b) Chứng minh rằng: Với mọi m, n nguyên dương và , ta có:
c) Tính .
ĐS: a) b) Chứng minh c)
Bài 2. Cho biểu thức: (với n nguyên dương).
a) Chứng minh rằng: b) Tính .
HD: a) Sử dụng hằng đẳng thức b)
Bài 3. Cho biểu thức: (với n nguyên dương).
a) Chứng minh rằng: b) Tính .
HD: a) Sử dụng hằng đẳng thức . Chứng minh .
b) .
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
IV. RÚT GỌN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI
Để rút gọn biểu thức có chứa căn thức bậc hai, ta cần biết vận dụng thích hợp các phép biến đổi đơn giản như: đưa thừa số ra ngoài dấu căn, đưa thừa số vào trong dấu căn, khử căn ở mẫu và trục căn thức ở mẫu để làm xuất hiện các căn thức bậc hai có cùng một biểu thức dưới dấu căn.
Bài 1. Cho biểu thức: .
a) Tìm x để biểu thức A có nghĩa. b) Rút gọn biểu thức A. c) Tìm x để .
ĐS: a) b) c)
Bài 2. Cho biểu thức: .
a) Rút gọn A nếu . b) Tìm x để A dương c) Tìm giá trị lớn nhất của A.
ĐS: a) b) c) .
Bài 3. Cho biểu thức: .
a) Rút gọn A. b) Tìm x để .
ĐS: a) b) .
Bài 4. Cho biểu thức: .
a) Rút gọn A. b) Tìm a để c) Tìm a để .
ĐS: a) b) c) .
Bài 5. Cho biểu thức: .
a) Rút gọn A. b) Tìm x để .
ĐS: a) b) .
Bài 6. Cho biểu thức: .
a) Rút gọn A. b) Tìm x để .
ĐS: a) b) .
Bài 7. Cho biểu thức: .
a) Rút gọn A. b) Tìm a để . c) Tìm giá trị nhỏ nhất của A.
ĐS: a) b) c) .
Bài 8. Cho biểu thức: .
a) Rút gọn A. b) Tìm a để . c) Tìm a để .
ĐS: a) b) c) .
Bài 9. Cho biểu thức: .
a) Rút gọn A. b) Tìm a để . c) Chứng minh rằng .
Bài 10. Cho biểu thức: .
a) Rút gọn A. b) Tìm x để .
ĐS: a) b) .
Bài 11. Cho biểu thức: .
a) Rút gọn A. b) Tìm a để .
ĐS: a) b) .
Bài 12. Cho biểu thức: .
a) Rút gọn A. b) Tính giá trị của A khi . c) Tìm x để .
ĐS: a) b) c) .
Bài 13. Cho biểu thức: .
a) Rút gọn B. b) Tính giá trị của B khi .
ĐS: a) b) .
Bài 14. Cho biểu thức: .
a) Rút gọn B. b) Tìm tất cả các số nguyên dương x để và .
ĐS: a) b) .
Bài 15. Cho biểu thức: .
a) Rút gọn B. b) Cho . Xác định x, y để B có giá trị nhỏ nhất.
ĐS:
Bài 16. Cho biểu thức:
a) Rút gọn B. b) Tính B khi .
ĐS:
Bài 17. Cho biểu thức: .
a) Rút gọn B. b) Chứng minh .
ĐS:
Bài 18. Cho biểu thức: .
a) Rút gọn B. b) Tính giá trị của B nếu và .
c) Tìm giá trị nhỏ nhất của B nếu .
V. CĂN BẬC BA
Căn bậc ba của một số a là số x sao cho .
Mọi số a đều có duy nhất một căn bậc ba.
Với B 0 ta có:
Dạng 1: THỰC HIỆN PHÉP TÍNH
Áp dụng: ;
và các hằng đẳng thức: ,
,
Bài 1. Thực hiện các phép tính sau:
a) b) c)
d) e)
ĐS: a) b) c) d) e) 5.
Bài 2. Thực hiện các phép tính sau:
a) b)
c) d)
ĐS: a) . Chú ý: b) . Chú ý:
c) . Chú ý:
d) . Đặt , . Tính .
Dạng 2: CHỨNG MINH ĐẲNG THỨC
Bài 1. Chứng minh rằng, nếu: và
thì .
HD: Đặt . Chứng tỏ .
Bài 2. Chứng minh đẳng thức:
HD: Khai triển vế phải và rút gọn ta được vế trái.
Bài 3.
a)
Dạng 3: SO SÁNH HAI SỐ
Áp dụng:
Bài 1. So sánh:
a) và b) và c) và
ĐS: a) b) c)
Bài 2. So sánh:
a) và
ĐS: a) . Chú ý: .
Dạng 4: GIẢI PHƯƠNG TRÌNH
Áp dụng:
Bài 1. Giải các phương trình sau:
a) b) c)
d) e)
ĐS: a) b) c) d) e)
Bài 2. Giải các phương trình sau:
a) b) c)
ĐS: Sử dụng phương pháp đặt 2 ẩn phụ, đưa về hệ phương trình.
a) b) c)
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
I. KHÁI NIỆM HÀM SỐ
1. Khái niệm hàm số
Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x, ta luôn xác định được một và chỉ một giá trị tương ứng của y thì y đgl hàm số của x, x đgl biến số.
Ta viết:
Giá trị của tại kí hiệu là .
Tập xác định D của hàm số là tập hợp các giá trị của x sao cho có nghĩa.
Khi x thay đổi mà y luôn nhận một giá trị không đổi thì hàm số y đgl hàm hằng.
2. Đồ thị của hàm số
Đồ thị của hàm số là tập hợp tất cả các điểm trong mặt phẳng toạ độ Oxy sao cho x, y thoả mãn hệ thức .
3. Hàm số đồng biến, nghịch biến
Cho hàm số xác định trên tập R.
a) đồng biến trên R ()
b) nghịch biến trên R ()
Bài 6. Cho hai hàm số và .
a) Tính . b) Xác định a để .
ĐS: b) .
Bài 7. Cho hàm số .
a) Tìm tập xác định của hàm số. b) Tính và với .
c) Tìm x nguyên để là số nguyên. d) Tìm x sao cho .
ĐS: a) b) , c) d)
Bài 8. Cho hàm số .
a) Tìm tập xác định D của hàm số. b) Chứng minh rằng .
ĐS: b)
Bài 9. Tìm tập xác định của các hàm số sau:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f)
Bài 10. Chứng tỏ rằng hàm số nghịch biến trong khoảng và đồng biến trong khoảng .
HD: Xét .
Bài 11. Chứng tỏ rằng hàm số luôn luôn đồng biến.
HD: Xét .
Bài 12. Chứng tỏ rằng hàm số nghịch biến trong từng khoảng xác định của nó.
HD: Xét .
Bài 13. Chứng tỏ rằng hàm số nghịch biến trong khoảng xác định của nó.
HD: . Xét .
Bài 14. Tìm giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn .
HD: Chứng tỏ hàm số luôn nghịch biến trên R .
Bài 15. Tìm giá trị lớn nhất và nhỏ nhất của hàm số trong đoạn .
HD: Chứng tỏ hàm số luôn đồng biến trên từng khoảng xác định của nó
Bài 16. Vẽ đồ thị của hai hàm số trên cùng một hệ trục toạ độ. Có nhận xét gì về hai đồ thị này.
Bài 17. Cho hàm số .
a) Chứng minh rằng hàm số đồng biến.
b) Trong các điểm , điểm nào thuộc và điểm nào không thuộc đồ thị của hàm số.
ĐS:
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
II. HÀM SỐ BẬC NHẤT
1. Khái niệm hàm số bậc nhất
Hàm số bậc nhất là hàm số được cho bởi công thức với .
2. Tính chất
Hàm số bậc nhất xác định với mọi x thuộc R và có tính chất sau:
a) Đồng biến trên R nếu b) Nghịch biến trên R nếu .
3. Đồ thị
Đồ thị của hàm số () là một đường thẳng:
– Cắt trục tung tại điểm có tung độ bằng b.
– Song song với đường thẳng nếu ; trùng với đường thẳng nếu .
Cách vẽ đồ thị hàm số ():
– Khi thì . Đồ thị của hàm số là đường thẳng đi qua gốc toạ độ O(0; 0) và điểm .
– Nếu thì đồ thị là đường thẳng đi qua các điểm , .
4. Đường thẳng song song và đường thẳng cắt nhau
Cho hai đường thẳng và ():
(d) cắt (d) a a
5. Hệ số góc của đường thẳng
Đường thẳng có hệ số góc là a.
Gọi là góc tạo bởi đường thẳng với tia Ox:
+ thì a > 0 + thì a < 0.
Các đường thẳng có cùng hệ số góc thì tạo với trục Ox các góc bằng nhau.
Bài 1. Trong các hàm số sau, hàm số nào là hàm số bậc nhất? Với các hàm số bậc nhất, hãy cho biết hàm số đó đồng biến hay nghịch biến?
a) b) c)
d) e) f)
Bài 2. Cho hàm số .
a) Hàm số trên là đồng biến hay nghịch biến trên R?
b) Tính các giá trị tương ứng của y khi x nhận các giá trị sau: .
c) Tính các giá trị tương ứng của x khi y nhận các giá trị sau: .
Bài 3. Cho các hàm số .
a) Vẽ trên cùng một hệ trục các đồ thị .
b) Đường thẳng cắt các đường thẳng lần lượt tại A và B. Tính toạ độ các điểm A, B và diện tích tam giác OAB.
ĐS: b) .
Bài 4. Cho hàm số .
a) Chứng minh rằng đồ thị hàm số luôn đi qua điểm với mọi giá trị của a.
b) Xác định a để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 3. Vẽ đồ thị hàm số trong trường hợp này.
c) Xác định a để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng –2. Tính khoảng cách từ gốc toạ độ O đến đường thẳng đó.
ĐS: b) c) .
Bài 5. Vẽ đồ thị các hàm số:
a) b) c)
Bài 6. Cho hàm số .
a) Vẽ đồ thị hàm số trên.
b) Dựa vào đồ thị, biện luận theo m số nghiệm của phương trình: .
ĐS: b) m < 1: vô nghiệm; m = 1: 1 nghiệm; m > 1: 2 nghiệm.
Bài 7. Tìm các cặp đường thẳng song song và các cặp đường thẳng cắt nhau trong số các đường thẳng sau:
a) b) c)
d) e) f)
ĐS: a // e; c // d; b // f.
Bài 8. Cho hàm số . Xác định m trong mỗi trường hợp sau:
a) Đồ thị hàm số song song với đường thẳng .
b) Khi thì .
ĐS: a) b) .
Bài 9. Xác định hàm số , biết đồ thị cắt trục tung tại điểm có tung độ bằng 5 và cắt trục hoành tại điểm có hoành độ bằng –3.
ĐS: .
Bài 10. Cho đường thẳng .
a) Xác định a để đường thẳng đi qua gốc toạ độ.
b) Xác định a để đường thẳng song song với đường thẳng .
ĐS: a) b) .
Bài 11. Xác định hàm số trong mỗi trường hợp sau, biết đồ thị của nó là đường thẳng đi qua gốc toạ độ và:
a) Đi qua điểm .
b) Có hệ số góc .
c) Song song với đường thẳng .
ĐS: a) b) c) .
Bài 12. Viết phương trình đường thẳng qua gốc toạ độ và:
a) đi qua điểm A(–3; 1).
b) có hệ số góc bằng –2.
c) song song với đường thẳng .
ĐS: a) b) c)
Bài 13. Viết phương trình đường thẳng đi qua điểm B(–1; –4) và:
a) có hệ số góc bằng .
b) song song với đường thẳng .
c) có hệ số góc bằng k cho trước.
ĐS: a) b) c) .
Bài 14. Cho hàm số .
a) Định m để đồ thị hàm số đi qua gốc toạ độ.
b) Tìm toạ độ của điểm mà đường thẳng luôn đi qua với mọi m.
ĐS: a) b) .
Bài 15. Cho 2 điểm A(1; –2), B(–4; 3).
a) Tìm hệ số góc của đường thẳng AB. b) Lập phương trình đường thẳng AB.
ĐS: a) b) .
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
BÀI TẬP ÔN CHƯƠNG II
Bài 1. Cho hai hàm số: và .
a) Vẽ đồ thị của hai hàm số đó trên cùng một hệ trục tọa độ Oxy.
b) Đường thẳng song song với trục Ox, cắt trục Oy tại điểm có tung độ bằng 6, cắt các đồ thị trên lần lượt ở A và B. Tìm tọa độ các điểm A và B. Tính chu vi và diện tích tam giác OAB.
ĐS: b) ; .
Bài 2. Cho hai hàm số và .
a) Vẽ đồ thị của hai hàm số đó trên cùng một hệ trục tọa độ Oxy.
b) Qua điểm (0; 2) vẽ đường thẳng song song với trục Ox, cắt các đồ thị trên lần lượt tại A và B. Chứng minh tam giác AOB là tam giác vuông và tính diện tích của tam giác đó.
Bài 3. Cho hàm số: (d).
a) Tìm các giá trị của m để hàm số đồng biến, nghịch biến.
b) Tìm các giá trị của m, biết rằng đường thẳng (d) đi qua điểm A(–1; 2). Vẽ đồ thị của hàm số với giá trị tìm được của m.
c) Chứng minh rằng khi m thay đổi thì các đường thẳng (d) luôn luôn đi qua một điểm cố định.
ĐS: b) c) .
Bài 4. Cho hàm số: .
a) Xác định m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 2.
b) Xác định m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2.
c) Xác định tọa độ giao điểm của hai đồ thị ứng với giá trị của m tìm được ở câu a, câu b.
Bài 5. Cho ba đường thẳng , và .
a) Vẽ ba đường thẳng đã cho trên cùng một hệ trục tọa độ Oxy.
b) Gọi giao điểm của hai đường thẳng là A, giao điểm của đường thẳng với hai đường thẳng theo thứ tự là B và C. Tìm tọa độ các điểm A, B, C.
c) Tam giác ABC là tam giác gì? Tính diện tích tam giác ABC.
Bài 6. Cho các hàm số sau: ; ; .
a) Vẽ đồ thị của các hàm số đã cho trên cùng một hệ trục tọa độ Oxy.
b) Gọi giao điểm của đường thẳng với đường thẳng và lần lượt là A và B. Tìm tọa độ các điểm A, B.
c) Tam giác AOB là tam giác gì? Vì sao? Tính diện tích tam giác AOB.
Bài 7. Cho hàm số: , .
a) Vẽ đồ thị của hai hàm số đã cho trên cùng một hệ trục tọa độ Oxy.
b) Gọi giao điểm của đường thẳng với trục Oy là A, giao điểm của đường thẳng với trục Ox là B, còn giao điểm của đường thẳng là C. Tam giác ABC là tam giác gì? Tìm tọa độ các điểm A, B, C.
c) Tính diện tích tam giác ABC.
Bài 8. Cho hai đường thẳng: và .
a) Vẽ đồ thị của các hàm số đã cho trên cùng một hệ trục tọa độ Oxy.
b) Gọi giao điểm của đường thẳng và với trục Oy lần lượt là A và B. Tìm tọa độ trung điểm I của đoạn AB.
c) Gọi J là giao điểm của hai đường thẳng và . Chứng minh tam giác OIJ là tam giác vuông. Tính diện tích của tam giác đó.
Bài 9. Cho đường thẳng (d): .
a) Xác định tọa độ giao điểm A và B của đường thẳng (d) với hai trục Ox, Oy. Tính khoảng cách từ điểm O(0; 0) đến đường thẳng (d).
b) Tính khoảng cách từ điểm C(0; –2) đến đường thẳng (d).
Bài 10. Tìm giá trị của k để ba đường thẳng sau đồng quy:
a) , ,
ĐS:
Bài 11. Cho hai đường thẳng: và .
a) Chứng minh rằng khi thì hai đường thẳng đã cho vuông góc với nhau.
b) Tìm tất cả các giá trị của m để hai đường thẳng đã cho vuông góc với nhau.
ĐS: b) .
Bài 12. Xác định hàm số trong mỗi trường hợp sau:
a) Khi , đồ thị hàm số cắt trục tung tại điểm có tung độ bằng .
b) Khi , đồ thị hàm số đi qua điểm A(–2; 3).
c) Đồ thị hàm số đi qua hai điểm M(1; 3) và N(–2; 6).
d) Đồ thị hàm số song song với đường thẳng và đi qua điểm .
ĐS: a) b) c) d) .
Bài 13. Cho đường thẳng: (d).
a) Viết phương trình đường thẳng song song với đường thẳng (d) và có tung độ gốc bằng 10.
b) Viết phương trình đường thẳng vuông góc với đường thẳng (d) và cắt trục Ox tại điểm có hoành độ bằng – 8.
c) Viết phương trình đường thẳng song song với đường thẳng (d) cắt trục Ox tại A, cắt trục Oy tại B và diện tích tam giác AOB bằng 8.
ĐS:
Bài 14. Cho hai đường thẳng: và . Tìm các giá trị của k để:
a) và cắt nhau. b) và cắt nhau tại một điểm trên trục tung.
c) và song song.
ĐS: a) b) c)
Bài 15. Cho hàm số . Tìm các giá trị của m, n để đường thẳng (d):
a) Đi qua các điểm A(1; –3) và B(–2; 3).
b) Cắt trục tung tại điểm có tung độ bằng , cắt trục hoành tại điểm có hoành độ .
c) Cắt đường thẳng .
d) Song song với đường thẳng .
I. PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
1. Khái niệm phương trình bậc nhất hai ẩn
Phương trình bậc nhất hai ẩn x, y là hệ thức dạng: (1)
trong đó a, b, c là các số đã biết (a 0 hoặc b 0).
Nếu thoả (1) thì cặp số đgl một nghiệm của phương trình (1).
Trong mặt phẳng toạ độ Oxy, mỗi nghiệm của (1) được biểu diễn bởi một điểm. Nghiệm được biểu diễn bởi điểm .
2. Tập nghiệm của phương trình bậc nhất hai ẩn
Phương trình bậc nhất hai ẩn luôn có vô số nghiệm. Tập nghiệm của nó được biểu diễn bởi đường thẳng (d).
Nếu a 0 và b 0 thì đường thẳng (d) là đồ thị của hàm số .
Nếu a 0 và b = 0 thì phương trình trở thành và đường thẳng (d) song song hoặc trùng với trục tung.
Nếu a = 0 và b 0 thì phương trình trở thành và đường thẳng (d) song song hoặc trùng với trục hoành.
Bài 18. Trong các cặp số (0; 4), (–1; 3), (1; 1), (2; 3), (4; 6), cặp số nào là nghiệm của phương trình:
a) b) c)
ĐS:
Bài 19. Tìm nghiệm tổng quát và vẽ đường thẳng biểu diễn tập nghiệm của nó:
a) b) c)
d) e) f)
ĐS:
Bài 20. Cho đường thẳng (d) có phương trình: . Tìm m để:
a) (d) song song với trục hoành. b) (d) song song với trục tung.
c) (d) đi qua gốc toạ độ. d) (d) đi qua điểm A(2; –1).
ĐS:
Bài 21. Tìm tất cả các nghiệm nguyên của phương trình:
a) b) c)
d) e) f)
ĐS: a) b) c) d)
e) f)
Bài 22. Tìm tất cả các nghiệm nguyên dương của phương trình:
a) b) c)
d) e)
ĐS: a) b)
c) ; ; ; ; ; ;
d) e) không có nghiệm nguyên dương.
II. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
1. Khái niệm hệ hai phương trình bậc nhất hai ẩn
Cho hệ hai phương trình bậc nhất hai ẩn:
(I)
Nếu hai phương trình trên có nghiệm chung thì đgl một nghiệm của hệ (I).
Nếu hai phương trình trên không có nghiệm chung thì ta nói hệ (I) vô nghiệm.
Giải hệ phương trình là tìm tập nghiệm của nó.
2. Minh hoạ hình học tập nghiệm của hệ hai phương trình bậc nhất hai ẩn
Tập nghiệm của hệ phương trình (I) được biểu diễn bởi tập hợp các điểm chung của hai đường thẳng và .
Nếu cắt thì hệ (I) có một nghiệm duy nhất.
Nếu // thì hệ (I) vô nghiệm.
Nếu thì hệ (I) có vô số nghiệm.
3. Hệ phương trình tương đương
Hai hệ phương trình đgl tương đương nếu chúng có cùng tập nghiệm.
Bài 1. Đoán nhận số nghiệm của mỗi hệ phương trình sau và giải thích vì sao:
a) b) c)
d) e) f)
ĐS: a) 1 nghiệm b) 1 nghiệm c) 1 nghiệm d) 1 nghiệm e) vô nghiệm f) vô số nghiệm.
Bài 2. Bằng đồ thị chứng tỏ các hệ phương trình sau luôn có nghiệm duy nhất với bất kì giá trị nào của a:
a) b)
Bài 3. Bằng đồ thị chứng tỏ hệ phương trình:
a) Có nghiệm duy nhất với . b) Vô nghiệm với .
Bài 4. Bằng đồ thị chứng tỏ hệ phương trình:
a) Có vô số nghiệm với . b) Vô nghiệm với .
Bài 5. Xác định m để hệ phương trình sau có nghiệm duy nhất:
a)
ĐS: a)
Bài 6. Xác định a để hai hệ phương trình sau là tương đương:
a) và b) và
ĐS: a) b)
III. GIẢI HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
1. Phương pháp thế
Bước 1: Từ một phương trình của hệ đã cho (coi là PT (1)), ta biểu diễn một ẩn theo ẩn kia, rồi thế vào phương trình thứ hai (PT (2)) để được một phương trình mới (chỉ còn một ẩn).
Bước 2: Dùng phương trình mới ấy để thay thế cho PT (2) trong hệ (PT (1) cũng thường được thay thế bởi hệ thức biểu diễn một ẩn theo ẩn kia).
2. Phương pháp cộng đại số
Bước 1: Cộng hay trừ từng vế hai phương trình của hệ phương trình đã cho để được một phương trình mới.
Bước 2: Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ (giữ nguyên phương trình kia).
Chú ý:
Trong phương pháp cộng đại số, trước khi thực hiện bước 1, có thể nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ là bằng nhau hoặc đối nhau.
Đôi khi ta có thể dùng phương pháp đặt ẩn phụ để đưa hệ phương trình đã cho về hệ phương trình với hai ẩn mới, rồi sau đó sử dụng một trong hai phương pháp giải ở trên.
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
Bài 1. Giải các hệ phương trình sau bằng phương pháp thế:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f)
Bài 2. Giải các hệ phương trình sau:
a) b)
c) d)
e) f)
ĐS: a) vô số nghiệm b) vô nghiệm c) vô nghiệm d) e) vô nghiệm f)
Bài 3. Giải các hệ phương trình sau:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e)
f)
Bài 4. Giải và biện luận các hệ phương trình sau:
a) b)
ĐS:
Bài 5. Tìm m nguyên để hệ phương trình sau có nghiệm duy nhất là nghiệm nguyên:
a) b)
ĐS: a) b)
Bài 6. Giải các hệ phương trình sau bằng phương pháp cộng đại số:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f)
Bài 7. Giải các hệ phương trình sau:
a) b) c)
d) e) f)
ĐS: a) vô nghiệm b) vô số nghiệm c) vô nghiệm d)
e) f)
Bài 8. Xác định a và b để đồ thị của hàm số đi qua hai điểm A và B trong mỗi trường hợp sau:
a) A(2; 1), B(1; 2) b) A(1; 3), B(3; 2) c) A(1; –3), B(2; 3)
d) A(–1; 1), B(2; 3) e) A(2; –2), B(–1; –2) f) A(1; 0), B(1; –6)
ĐS: a) b) c) d) e) f)
Bài 9. Chứng tỏ rằng khi m thay đổi, các đường thẳng có phương trình sau luôn đi qua một điểm cố định:
a) b)
ĐS: a) b)
IV. GIẢI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
Bước 1: Lập hệ phương trình:
+ Chọn hai ẩn và đặt điều kiện thích hợp cho chúng.
+ Biểu diễn các đại lượng chưa biết theo các ẩn và các đại lượng đã biết.
+ Lập hai phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải hệ hai phương trình nói trên.
Bước 3: Trả lời: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán (thoả mãn điều kiện ở bước 1) và kết luận.
Dạng 1: Toán về quan hệ giữa các số
Bài 1. Tìm một số tự nhiên có hai chữ số sao cho tổng của hai chữ số của nó bằng 11, nếu đổi chỗ hai chữ số hàng chục và hàng đơn vị cho nhau thì số đó tăng thêm 27 đơn vị.
ĐS: 47.
Bài 2. Tìm một số tự nhiên có ba chữ số sao cho tổng các chữ số bằng 17, chữ số hàng chục là 4, nếu đổi chỗ các chữ số hàng trăm và hàng đơn vị cho nhau thì số đó giảm đi 99 đơn vị.
ĐS: 746.
Bài 3. Tìm một số tự nhiên có ba chữ số chia hết cho 11, biết rằng khi chia số đó cho 11 thì được thương bằng tổng các chữ số của số bị chia.
ĐS: 198.
Bài 4. Tìm hai số biết rằng tổng của hai số đó bằng 17 đơn vị. Nếu số thứ nhất tăng thêm 3 đơn vị, số thứ hai tăng thêm 2 đơn vị thì tích của chúng bằng 105 đơn vị.
ĐS: 12 và 5 hoặc 4 và 13.
Dạng 2: Toán làm chung công việc
Bài 1. Hai vòi nước cùng chảy vào một bể sau 4 giờ 48 phút thì đầy bể. Nếu vòi I chảy trong 4 giờ, vòi II chảy trong 3 giờ thì cả hai vòi chảy được bể. Tính thời gian để mỗi vòi chảy riêng một mình đầy bể.
ĐS: 8 giờ và 12 giờ.
Bài 2. Để hoàn thành một công việc, hai tổ phải làm chung trong 6 giờ. Sau 2 giờ làm chung thì tổ II được điều đi làm việc khác, tổ I đã hoàn thành công việc còn lại trong 10 giờ. Hỏi nếu mỗi tổ làm riêng thì sau bao lâu sẽ xong công việc đó.
ĐS:
Bài 3. Hai lớp 9A và 9B cùng tham gia lao động vệ sinh sân trường thì công việc được hoàn thành sau 1 giờ 20 phút. Nếu mỗi lớp chia nhau làm nửa công việc thì thời gian hoàn tất là 3 giờ. Hỏi nếu mỗi lớp làm một mình thì phải mất bao nhiêu thời gian.
ĐS:
Dạng 3: Toán chuyển động
Bài 1. Một ô tô đi từ tỉnh A đến tỉnh B với một vận tốc đã định. Nếu vận tốc tăng thêm 20 km/h thì thời gian đi được sẽ giảm 1 giờ. Nếu vận tốc giảm bớt 10 km/h thì thời gian đi sẽ tăng thêm 1 giờ. Tính vận tốc và thời gian dự định của ô tô.
ĐS: 40 km/h; 3 giờ.
Bài 2. Hai địa điểm A và B cách nhau 85 km. Cùng lúc, một canô đi xuôi dòng thừ A đến B và một canô đi ngược dòng từ B đến A, sau 1 giờ 40 phút thì gặp nhau. Tính vận tốc thật của mỗi canô, biết rằng vận tốc canô đi xuôi dòng lớn hơn vận tốc canô đi ngược dòng là 9 km/h và vận tốc dòng nước là 3 km/h (vận tốc thật của các canô không đổi).
ĐS: 27 km/h; 24 km/h.
Bài 3. Quãng đường AB dài 200 km. Cùng lúc một xe máy đi từ A đến B và một ô tô đi từ B đến A. Xe máy và ô tô gặp nhau tại điểm C cách A 120 km. Nếu xe máy khởi hành sau ô tô 1 giờ thì gặp nhau tại điểm D cách C 24 km. Tính vận tốc của ô tô và xe máy.
ĐS: 60 km/h; 40 km/h.
Bài 4. Một xe khách và một xe du lịch khởi hành đồng thời từ A để đi đến B. Biết vận tốc của xe du lịch lớn hơn vận tốc xe khách là 20 km/h. Do đó xe du lịch đến B trước xe khách 50 phút. Tính vận tốc mỗi xe, biết quãng đường AB dài 100 km.
ĐS:
Bài 5. Một người đi xe máy từ A đến B. Vì có việc gấp phải đến B trước thời gian dự định là 45 phút nên người đó tăng vận tốc lên mỗi giờ 10 km. Tính vận tốc mà người đó dự định đi, biết quãng đờng AB dài 90 km.
ĐS:
Bài 6. Một người đi xe máy từ A tới B. Cùng một lúc một người khác cũng đi xe máy từ B tới A với vận tốc bằng vận tốc của người thứ nhất. Sau 2 giờ hai người gặp nhau. Hỏi mỗi người đi cả quãng đường AB hết bao lâu?
ĐS:
Bài 7. Một canô ngược dòng từ bến A đến bến B với vận tốc 20 km/h, sau đó lại xuôi từ bến B trở về bến A. Thời gian canô ngược dòng từ A đến B nhiều hơn thời gian canô xuôi dòng từ B trở về A là 2 giờ 40 phút. Tính khoảng cách giữa hai bến A và B. Biết vận tốc dòng nước là 5 km/h, vận tốc riêng của canô lúc xuôi dòng và lúc ngược dòng bằng nhau.
Dạng 4: Toán có nội dung hình học
Bài 1. Một tam giác có chiều cao bằng cạnh đáy. Nếu chiều cao tăng thêm 3 dm và cạnh đáy giảm đi 3 dm thì diện tích của nó tăng thêm 12 . Tính chiều cao và cạnh đáy của tam giác.
ĐS: Cạnh đáy 20 dm, chiều cao 15 dm.
Bài 2. Một khu vườn hình chữ nhật có chu vi bằng 48 m. Nếu tăng chiều rộng lên bốn lần và chiều dài lên ba lần thì chu vi của khu vườn sẽ là 162 m. Hãy tìm diện tích của khu vườn ban đầu.
ĐS:
Bài 3. Người ta muốn làm một chiếc thùng tôn hình trụ không nắp có bán kính đáy là 25 cm, chiều cao của thùng là 60 cm. Hãy tính diện tích tôn cần dùng (không kể mép nối). Thùng tôn đó khi chứa đầy nước thì thể tích nước chứa trong thùng là bao nhiêu.
ĐS:
Bài 4. Một thửa ruộng hình chữ nhật có diện tích là 100 m2. Tính độ dài các cạnh của thửa ruộng. Biết rằng nếu tăng chiều rộng của thửa ruộng lên 2 m và giảm chiều dài của thửa ruộng đi 5 m thì diện tích của thửa ruộng sẽ tăng thêm 5 m2.
ĐS:
Dạng 5: Các dạng khác
Bài 1. Hai giá sách có 450 cuốn. Nếu chuyển 50 cuốn từ giá thứ nhất sang giá thứ hai thì số sách trên giá thứ hai bằng số sách ở giá thứ nhất. Tính số sách trên mỗi giá.
ĐS: 300; 150.
Bài 2. Hai xí nghiệp theo kế hoạch phải làm tổng cộng 360 dụng cụ. Thực tế, xí nghiệp I vượt mức kế hoạch 10%, xí nghiệp II vượt mức kế hoạch 15%, do đó cả hai xí nghiệp đã làm được 404 dụng cụ. Tính số dụng cụ mỗi xí nghiệp phải làm theo kế hoạch.
ĐS:
Bài 3. Một công nhân dự định làm 72 sản phẩm trong một thời gian đã định. Nhng thực tế xí nghiệp lại giao 80 sản phẩm. Mặc dù người đó mỗi giờ đã làm thêm một sản phẩm so với dự kiến, nhưng thời gian hoàn thành công việc vẫn chậm so với dự định là 12 phút. Tính số sản phẩm dự kiến làm trong 1 giờ của người đó. Biết mỗi giờ người đó làm không quá 20 sản phẩm.
ĐS:
Bài 4. Theo kế hoạch, một công nhân phải hoàn thành 60 sản phẩm trong thời gian nhất định. Nhưng do cải tiến kĩ thuật nên mỗi giờ người công nhân đó đã làm thêm được 2 sản phẩm. Vì vậy, chẳng những hoàn thành kế hoạch sớm hơn dự định 30 phút mà còn vượt mức 3 sản phẩm. Hỏi theo kế hoạch, mỗi giờ người đó phải làm bao nhiêu sản phẩm.
ĐS:
Bài 5. Một đội công nhân hoàn thành một công việc với mức 420 ngày công thợ (nghĩa là nếu công việc đó chỉ có một người làm thì phải mất 420 ngày). Hãy tính số công nhân của đội biết rằng nếu đội tăng thêm 5 người thì số ngày để đội hoàn thành công việc sẽ giảm đi 7 ngày.
ĐS:
Bài 6. Một đội xe vận tải phải vận chuyển 28 tấn hàng đến một địa điểm qui định. Vì trong đội có 2 xe phải điều đi làm việc khác nên mỗi xe phải chở thêm 0,7 tấn hàng nữa. Tính số xe của đội lúc đầu.
ĐS:
Bài 7. Người ta dự kiến trồng 300 cây trong một thời gian đã định. Do điều kiện thuận lợi nên mỗi ngày trồng được nhiều hơn 5 cây so với dự kiến, vì vậy đã trồng xong 300 cây ấy trước 3 ngày. Hỏi dự kiến ban đầu mỗi ngày trồng bao nhiêu cây? (Giả sử số cây dự kiến trồng mỗi ngày là bằng nhau).
ĐS:
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
BÀI TẬP ÔN CHƯƠNG III
Bài 1. Giải các hệ phương trình sau:
a) b) c)
d) e) f)
Bài 2. Giải các hệ phương trình sau:
a) b) c)
d) e) f)
Bài 3. Giải và biện luận các hệ phương trình sau:
a) b) c)
d) e) f)
Bài 4. Trong các hệ phương trình sau hãy:
i) Giải và biện luận. ii) Tìm m Z để hệ có nghiệm duy nhất là nghiệm nguyên.
a) b) c)
Bài 5. Trong các hệ phương trình sau hãy:
i) Giải và biện luận.
ii) Khi hệ có nghiệm (x; y), tìm hệ thức giữa x, y độc lập đối với m.
a) b) c)
Bài 6. Giải các hệ phương trình sau:
a) b) c)
Bài 7. Một khu vườn hình chữ nhật, chiều dài lớn hơn chiều rộng 5 m, diện tích bằng 300 m2. Tính chiều dài và chiều rộng của khu vườn.
ĐS:
Bài 8. Cho một hình chữ nhật. Nếu tăng độ dài mỗi cạnh của nó lên 1 cm thì diện tích của hình chữ nhật sẽ tăng thêm 13 cm2. Nếu giảm chiều dài đi 2 cm, chiều rộng đi 1 cm thì diện tích của hình chữ nhật sẽ giảm 15 cm2. Tính chiều dài và chiều rộng của hình chữ nhật đã cho.
ĐS:
Bài 9. Một mảnh đất hình chữ nhật có chu vi 80 m. Nếu tăng chiều dài thêm 3 m, chiều rộng thêm 5 m thì diện tích của mảnh đất tăng thêm 195 m2. Tính chiều dài, chiều rộng của mảnh đất.
ĐS:
Bài 10. Một tam giác có chiều cao bằng cạnh đáy. Nếu chiều cao giảm đi 2 dm và cạnh đáy tăng thêm 3 dm thì diện tích của nó giảm đi 14 dm2. Tính chiều cao và cạnh đáy của tam giác.
ĐS:
Bài 11. Hai xe máy khởi hành cùng một lúc từ hai tỉnh A và B cách nhau 90 km, đi ngược chiều và gặp nhau sau 1,2 giờ (xe thứ nhất khởi hành từ A, xe thứ hai khởi hành từ B). Tìm vận tốc của mỗi xe. Biết rằng thời gian để xe thứ nhất đi hết quãng đường AB ít hơn thời gian để xe thứ hai đi hết quãng đường AB là 1 giờ.
ĐS:
Bài 12. Một xe lửa đi từ ga Hà Nội vào ga Trị Bình (Quảng Ngãi). Sau đó 1 giờ, một xe lửa khác đi từ ga Trị Bình ra ga Hà Nội với vận tốc lớn hơn vận tốc của xe thứ nhất là 5 km/h. Hai xe gặp nhau tại một ga ở chính giữa quãng đường. Tìm vận tốc của mỗi xe lửa, biết quãng đường sắt Hà Nội – Trị Bình dài 900km.
ĐS:
Bài 13. Hai ôtô khởi hành cùng một lúc trên quãng đường từ A đến B dài120 km. Mỗi giờ ôtô thứ nhất chạy nhanh hơn ôtô thứ hai là 10 km nên đến B trớc ôtô thứ hai là giờ. Tính vận tốc của mỗi ôtô?
ĐS:
Bài 14. Một canô xuôi dòng từ bến sông A đến bến sông B cách nhau 24 km; cùng lúc đó, cũng từ A về B một bè nứa trôi với vận tốc dòng nước là 4 km/h. Khi đến B canô quay lại ngay và gặp bè nứa tại địa điểm C cách A là 8 km. Tính vận tốc thực của canô.
ĐS:
Bài 15. Cùng một thời điểm, một chiếc ôtô XA xuất phát từ thành phố A về hướng thành phố B và một chiếc khác XB xuất phát từ thành phố B về hướng thành phố A. Chúng chuyển động với vận tốc riêng không đổi và gặp nhau lần đầu tại một điểm cách A là 20 km. Cả hai chiéc xe sau khi đến B và A tương ứng, lập tức quay trở lại và chúng gặp nhau lần thứ hai tại một điểm C. Biết thời gian xe XB đi từ C đến B là 10 phút và thời gian giữa hai lần gặp nhau là 1 giờ. Hãy tính vận tốc của từng chiếc ôtô.
ĐS:
Bài 16. Một xuồng máy xuôi dòng sông 30 km và ngược dòng 28 km hết một thời gian bằng thời gian mà xuồng đi 59,5 km trên mặt hồ yên lặng. Tính vận tốc của xuồng khi đi trên hồ biết rằng vận tốc của nước chảy trên sông là 3 km/h.
ĐS:
Bài 17. Một xe máy đi từ A đến B trong một thời gian dự định. Nếu vận tốc tăng thêm 14 km/ giờ thì đến sớm 2 giờ, nếu giảm vận tốc đi 4 km/ giờ thì đến muộn 1 giờ. Tính vận tốc dự định và thời gian dự định.
ĐS:
Bài 18. Một tàu thuỷ chạy trên khúc sông dài 120 km, cả đi và về mất 6 giờ 45 phút. Tính vận tốc của tàu thuỷ khi nước yên lặng, biết rằng vận tốc của dòng nước là 4 km/ h.
ĐS:
Bài 19. Một canô đi xuôi dòng 48 km rồi đi ngược dòng 22 km. Biết rằng thời gian đi xuôi dòng lớn hơn thời gian đi ngược dòng là 1 giờ và vận tốc đi xuôi lớn hơn vận tốc đi ngược là 5 km/h. Tính vận tốc
PHẦN ĐẠI SỐ
I. CĂN BẬC HAI - CĂN THỨC BẬC HAI
1. Căn bậc hai số học
Căn bậc hai của một số không âm a là số x sao cho .
Số dương a có đúng hai căn bậc hai là hai số đối nhau: Số dương kí hiệu là , số âm kí hiệu là .
Số 0 có đúng một căn bậc hai là chính số 0, ta viết .
Với số dương a, số đgl căn bậc hai số học của a. Số 0 cũng đgl căn bậc hai số học của 0
Với hai số không âm a, b, ta có: a < b .
2. Căn thức bậc hai
Với A là một biểu thức đại số, ta gọi là căn thức bậc hai của A.
xác định (hay có nghĩa) khi A lấy giá trị không âm.
Dạng 1: TÌM ĐIỀU KIỆN ĐỂ CÓ NGHĨA
có nghĩa có nghĩa A > 0
Bài 1. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f)
Bài 2. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f)
Bài 3. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f) không có
Bài 4. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
a) b) c)
d) e) f)
ĐS: a) b) c) d) hoặc e) hoặc
f) hoặc
Bài 5. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
a) b) c)
d) e) f)
ĐS: a) b) hoặc c) d) e) f)
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
Dạng 2: TÍNH GIÁ TRỊ BIỂU THỨC
Áp dụng:
Bài 1. Thực hiện các phép tính sau:
a) b) c)
d) e) f)
ĐS: a) b) 8 c) d) e) f)
Bài 2. Thực hiện các phép tính sau:
a) b)
c) d)
e) f)
ĐS: a) 6 b) c) 1 d) 4 e) f)
Bài 3. Thực hiện các phép tính sau:
a) b) c)
d) e) f)
ĐS: a) b) c) d)
Bài 4. Thực hiện các phép tính sau:
a) b) c)
d) e)
Dạng 3: RÚT GỌN BIỂU THỨC
Áp dụng:
Chú ý: Xét các trường hợp A ≥ 0, A < 0 để bỏ dấu giá trị tuyệt đối.
Bài 1. Rút gọn các biểu thức sau:
a) b)
c) d)
ĐS: a) 6 b) 2 c) 1 d)
Bài 2. * Rút gọn các biểu thức sau:
a) b) c)
d) e) f)
ĐS:
Bài 3. Cho biểu thức .
a) Với giá trị nào của x thì A có nghĩa?
b) Tính A nếu .
ĐS: a) hoặc b)
Bài 4. Cho 3 số dương thoả điều kiện: . Tính:
ĐS: . Chú ý: ,
,
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
Dạng 4: GIẢI PHƯƠNG TRÌNH
Áp dụng: ; ;
Bài 1. Giải các phương trình sau:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f)
Bài 2. Giải các phương trình sau:
a) b) c)
d) e) f)
ĐS: a) b) c) d) vô nghiệm e) f) vô nghiệm
Bài 3. Giải các phương trình sau:
a) b) c)
d) e) f)
ĐS: a) b) c) vô nghiệm d) e) f) vô nghiệm
Bài 4. Giải các phương trình sau:
a) b) c)
d) e) f)
ĐS: a) b) vô nghiệm c) d) vô nghiệm e)
f)
Bài 5. Giải các phương trình sau:
a) b) c)
d)
ĐS: a) b) c) d)
Bài 6. Giải các phương trình sau:
a) b) c)
d)
ĐS: a) b) vô nghiệm c) d)
II. LIÊN HỆ GIỮA PHÉP KHAI PHƯƠNG VÀ PHÉP NHÂN, PHÉP CHIA
Khai phương một tích:
Nhân các căn bậc hai:
Khai phương một thương:
Chia hai căn bậc hai:
Dạng 1: THỰC HIỆN PHÉP TÍNH
Bài 1. Thực hiện các phép tính sau:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f)
Bài 2. Thực hiện các phép tính sau:
a) b)
c) d)
e) f)
ĐS: Chú ý:
a) b) c) d) e) f)
Bài 3. Thực hiện các phép tính sau:
a) b) c)
d) e) f)
ĐS: a) b) c) 0 d) 2 e) f) 14
Bài 4. Thực hiện các phép tính sau:
a) b) c)
d) e) f)
ĐS: a) –2 b) c) 4 d) 1
Bài 5. Thực hiện các phép tính sau:
a) b)
c)
ĐS: Chứng tỏ . Tính ; ,
Dạng 2: RÚT GỌN BIỂU THỨC VÀ TÍNH GIÁ TRỊ BIỂU THỨC
Bài 1. Rút gọn các biểu thức:
a) b) c)
d) e) f)
ĐS: a) b) c) d) . Tách
e) f)
Bài 2. Rút gọn các biểu thức sau:
a) b)
c)
ĐS: a) b) c) nếu và nếu
Bài 3. Rút gọn và tính:
a) với b) với
c) với d)với
ĐS: a) b) c) d) 2
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
Dạng 3: GIẢI PHƯƠNG TRÌNH
Bài 1. Giải các phương trình sau:
a) b) c)
d) e)
ĐS: a) b) vô nghiệm c) d) e)
Dạng 4: CHỨNG MINH BẤT ĐẲNG THỨC
Bài 1. So sánh các số:
a) và 1 b) và c) và
ĐS:
Bài 2. Cho các số không âm a, b, c. Chứng minh:
a) b) c)
d) e)
ĐS:
Bài 3. Tìm giá trị lớn nhất của các biểu thức sau:
a) b) c)
ĐS: a) b) c)
III. BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI
Với A ≥ 0 và B ≥ 0 thì + Với A < 0 và B ≥ 0 thì
Với A ≥ 0 và B ≥ 0 thì + Với A < 0 và B ≥ 0 thì
Với A.B ≥ 0 và B 0 thì + Với B > 0 thì
Với A ≥ 0 và thì
Với A ≥ 0, B ≥ 0 và A B thì
Dạng 1: THỰC HIỆN PHÉP TÍNH
Bài 1. Thực hiện các phép tính sau:
a) b)
c) d)
e) f)
ĐS: a) b) c) d) e) f)
Bài 2. Thực hiện các phép tính sau:
a) b)
c) d)
e) f)
ĐS: a) b) c) d) e) f) 1
Bài 3. Thực hiện các phép tính sau:
a)
ĐS:
Dạng 2: RÚT GỌN BIỂU THỨC
Bài 1. Rút gọn và tính giá trị biểu thức:
a) , b) ,
c) , d) ,
e) , f) ,
ĐS: a) b) c)
d) e) f)
Dạng 3: GIẢI PHƯƠNG TRÌNH
Bài 1. Giải các phương trình sau:
a) b)
c) d)
e) f)
ĐS: a) b) 290 c) vô nghiệm d) e)
Dạng 4: CHỨNG MINH ĐẲNG THỨC
Bài 1. Cho biểu thức: (với n nguyên dương).
a) Tính .
b) Chứng minh rằng: Với mọi m, n nguyên dương và , ta có:
c) Tính .
ĐS: a) b) Chứng minh c)
Bài 2. Cho biểu thức: (với n nguyên dương).
a) Chứng minh rằng: b) Tính .
HD: a) Sử dụng hằng đẳng thức b)
Bài 3. Cho biểu thức: (với n nguyên dương).
a) Chứng minh rằng: b) Tính .
HD: a) Sử dụng hằng đẳng thức . Chứng minh .
b) .
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
IV. RÚT GỌN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI
Để rút gọn biểu thức có chứa căn thức bậc hai, ta cần biết vận dụng thích hợp các phép biến đổi đơn giản như: đưa thừa số ra ngoài dấu căn, đưa thừa số vào trong dấu căn, khử căn ở mẫu và trục căn thức ở mẫu để làm xuất hiện các căn thức bậc hai có cùng một biểu thức dưới dấu căn.
Bài 1. Cho biểu thức: .
a) Tìm x để biểu thức A có nghĩa. b) Rút gọn biểu thức A. c) Tìm x để .
ĐS: a) b) c)
Bài 2. Cho biểu thức: .
a) Rút gọn A nếu . b) Tìm x để A dương c) Tìm giá trị lớn nhất của A.
ĐS: a) b) c) .
Bài 3. Cho biểu thức: .
a) Rút gọn A. b) Tìm x để .
ĐS: a) b) .
Bài 4. Cho biểu thức: .
a) Rút gọn A. b) Tìm a để c) Tìm a để .
ĐS: a) b) c) .
Bài 5. Cho biểu thức: .
a) Rút gọn A. b) Tìm x để .
ĐS: a) b) .
Bài 6. Cho biểu thức: .
a) Rút gọn A. b) Tìm x để .
ĐS: a) b) .
Bài 7. Cho biểu thức: .
a) Rút gọn A. b) Tìm a để . c) Tìm giá trị nhỏ nhất của A.
ĐS: a) b) c) .
Bài 8. Cho biểu thức: .
a) Rút gọn A. b) Tìm a để . c) Tìm a để .
ĐS: a) b) c) .
Bài 9. Cho biểu thức: .
a) Rút gọn A. b) Tìm a để . c) Chứng minh rằng .
Bài 10. Cho biểu thức: .
a) Rút gọn A. b) Tìm x để .
ĐS: a) b) .
Bài 11. Cho biểu thức: .
a) Rút gọn A. b) Tìm a để .
ĐS: a) b) .
Bài 12. Cho biểu thức: .
a) Rút gọn A. b) Tính giá trị của A khi . c) Tìm x để .
ĐS: a) b) c) .
Bài 13. Cho biểu thức: .
a) Rút gọn B. b) Tính giá trị của B khi .
ĐS: a) b) .
Bài 14. Cho biểu thức: .
a) Rút gọn B. b) Tìm tất cả các số nguyên dương x để và .
ĐS: a) b) .
Bài 15. Cho biểu thức: .
a) Rút gọn B. b) Cho . Xác định x, y để B có giá trị nhỏ nhất.
ĐS:
Bài 16. Cho biểu thức:
a) Rút gọn B. b) Tính B khi .
ĐS:
Bài 17. Cho biểu thức: .
a) Rút gọn B. b) Chứng minh .
ĐS:
Bài 18. Cho biểu thức: .
a) Rút gọn B. b) Tính giá trị của B nếu và .
c) Tìm giá trị nhỏ nhất của B nếu .
V. CĂN BẬC BA
Căn bậc ba của một số a là số x sao cho .
Mọi số a đều có duy nhất một căn bậc ba.
Với B 0 ta có:
Dạng 1: THỰC HIỆN PHÉP TÍNH
Áp dụng: ;
và các hằng đẳng thức: ,
,
Bài 1. Thực hiện các phép tính sau:
a) b) c)
d) e)
ĐS: a) b) c) d) e) 5.
Bài 2. Thực hiện các phép tính sau:
a) b)
c) d)
ĐS: a) . Chú ý: b) . Chú ý:
c) . Chú ý:
d) . Đặt , . Tính .
Dạng 2: CHỨNG MINH ĐẲNG THỨC
Bài 1. Chứng minh rằng, nếu: và
thì .
HD: Đặt . Chứng tỏ .
Bài 2. Chứng minh đẳng thức:
HD: Khai triển vế phải và rút gọn ta được vế trái.
Bài 3.
a)
Dạng 3: SO SÁNH HAI SỐ
Áp dụng:
Bài 1. So sánh:
a) và b) và c) và
ĐS: a) b) c)
Bài 2. So sánh:
a) và
ĐS: a) . Chú ý: .
Dạng 4: GIẢI PHƯƠNG TRÌNH
Áp dụng:
Bài 1. Giải các phương trình sau:
a) b) c)
d) e)
ĐS: a) b) c) d) e)
Bài 2. Giải các phương trình sau:
a) b) c)
ĐS: Sử dụng phương pháp đặt 2 ẩn phụ, đưa về hệ phương trình.
a) b) c)
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
I. KHÁI NIỆM HÀM SỐ
1. Khái niệm hàm số
Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x, ta luôn xác định được một và chỉ một giá trị tương ứng của y thì y đgl hàm số của x, x đgl biến số.
Ta viết:
Giá trị của tại kí hiệu là .
Tập xác định D của hàm số là tập hợp các giá trị của x sao cho có nghĩa.
Khi x thay đổi mà y luôn nhận một giá trị không đổi thì hàm số y đgl hàm hằng.
2. Đồ thị của hàm số
Đồ thị của hàm số là tập hợp tất cả các điểm trong mặt phẳng toạ độ Oxy sao cho x, y thoả mãn hệ thức .
3. Hàm số đồng biến, nghịch biến
Cho hàm số xác định trên tập R.
a) đồng biến trên R ()
b) nghịch biến trên R ()
Bài 6. Cho hai hàm số và .
a) Tính . b) Xác định a để .
ĐS: b) .
Bài 7. Cho hàm số .
a) Tìm tập xác định của hàm số. b) Tính và với .
c) Tìm x nguyên để là số nguyên. d) Tìm x sao cho .
ĐS: a) b) , c) d)
Bài 8. Cho hàm số .
a) Tìm tập xác định D của hàm số. b) Chứng minh rằng .
ĐS: b)
Bài 9. Tìm tập xác định của các hàm số sau:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f)
Bài 10. Chứng tỏ rằng hàm số nghịch biến trong khoảng và đồng biến trong khoảng .
HD: Xét .
Bài 11. Chứng tỏ rằng hàm số luôn luôn đồng biến.
HD: Xét .
Bài 12. Chứng tỏ rằng hàm số nghịch biến trong từng khoảng xác định của nó.
HD: Xét .
Bài 13. Chứng tỏ rằng hàm số nghịch biến trong khoảng xác định của nó.
HD: . Xét .
Bài 14. Tìm giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn .
HD: Chứng tỏ hàm số luôn nghịch biến trên R .
Bài 15. Tìm giá trị lớn nhất và nhỏ nhất của hàm số trong đoạn .
HD: Chứng tỏ hàm số luôn đồng biến trên từng khoảng xác định của nó
Bài 16. Vẽ đồ thị của hai hàm số trên cùng một hệ trục toạ độ. Có nhận xét gì về hai đồ thị này.
Bài 17. Cho hàm số .
a) Chứng minh rằng hàm số đồng biến.
b) Trong các điểm , điểm nào thuộc và điểm nào không thuộc đồ thị của hàm số.
ĐS:
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
II. HÀM SỐ BẬC NHẤT
1. Khái niệm hàm số bậc nhất
Hàm số bậc nhất là hàm số được cho bởi công thức với .
2. Tính chất
Hàm số bậc nhất xác định với mọi x thuộc R và có tính chất sau:
a) Đồng biến trên R nếu b) Nghịch biến trên R nếu .
3. Đồ thị
Đồ thị của hàm số () là một đường thẳng:
– Cắt trục tung tại điểm có tung độ bằng b.
– Song song với đường thẳng nếu ; trùng với đường thẳng nếu .
Cách vẽ đồ thị hàm số ():
– Khi thì . Đồ thị của hàm số là đường thẳng đi qua gốc toạ độ O(0; 0) và điểm .
– Nếu thì đồ thị là đường thẳng đi qua các điểm , .
4. Đường thẳng song song và đường thẳng cắt nhau
Cho hai đường thẳng và ():
(d) cắt (d) a a
5. Hệ số góc của đường thẳng
Đường thẳng có hệ số góc là a.
Gọi là góc tạo bởi đường thẳng với tia Ox:
+ thì a > 0 + thì a < 0.
Các đường thẳng có cùng hệ số góc thì tạo với trục Ox các góc bằng nhau.
Bài 1. Trong các hàm số sau, hàm số nào là hàm số bậc nhất? Với các hàm số bậc nhất, hãy cho biết hàm số đó đồng biến hay nghịch biến?
a) b) c)
d) e) f)
Bài 2. Cho hàm số .
a) Hàm số trên là đồng biến hay nghịch biến trên R?
b) Tính các giá trị tương ứng của y khi x nhận các giá trị sau: .
c) Tính các giá trị tương ứng của x khi y nhận các giá trị sau: .
Bài 3. Cho các hàm số .
a) Vẽ trên cùng một hệ trục các đồ thị .
b) Đường thẳng cắt các đường thẳng lần lượt tại A và B. Tính toạ độ các điểm A, B và diện tích tam giác OAB.
ĐS: b) .
Bài 4. Cho hàm số .
a) Chứng minh rằng đồ thị hàm số luôn đi qua điểm với mọi giá trị của a.
b) Xác định a để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 3. Vẽ đồ thị hàm số trong trường hợp này.
c) Xác định a để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng –2. Tính khoảng cách từ gốc toạ độ O đến đường thẳng đó.
ĐS: b) c) .
Bài 5. Vẽ đồ thị các hàm số:
a) b) c)
Bài 6. Cho hàm số .
a) Vẽ đồ thị hàm số trên.
b) Dựa vào đồ thị, biện luận theo m số nghiệm của phương trình: .
ĐS: b) m < 1: vô nghiệm; m = 1: 1 nghiệm; m > 1: 2 nghiệm.
Bài 7. Tìm các cặp đường thẳng song song và các cặp đường thẳng cắt nhau trong số các đường thẳng sau:
a) b) c)
d) e) f)
ĐS: a // e; c // d; b // f.
Bài 8. Cho hàm số . Xác định m trong mỗi trường hợp sau:
a) Đồ thị hàm số song song với đường thẳng .
b) Khi thì .
ĐS: a) b) .
Bài 9. Xác định hàm số , biết đồ thị cắt trục tung tại điểm có tung độ bằng 5 và cắt trục hoành tại điểm có hoành độ bằng –3.
ĐS: .
Bài 10. Cho đường thẳng .
a) Xác định a để đường thẳng đi qua gốc toạ độ.
b) Xác định a để đường thẳng song song với đường thẳng .
ĐS: a) b) .
Bài 11. Xác định hàm số trong mỗi trường hợp sau, biết đồ thị của nó là đường thẳng đi qua gốc toạ độ và:
a) Đi qua điểm .
b) Có hệ số góc .
c) Song song với đường thẳng .
ĐS: a) b) c) .
Bài 12. Viết phương trình đường thẳng qua gốc toạ độ và:
a) đi qua điểm A(–3; 1).
b) có hệ số góc bằng –2.
c) song song với đường thẳng .
ĐS: a) b) c)
Bài 13. Viết phương trình đường thẳng đi qua điểm B(–1; –4) và:
a) có hệ số góc bằng .
b) song song với đường thẳng .
c) có hệ số góc bằng k cho trước.
ĐS: a) b) c) .
Bài 14. Cho hàm số .
a) Định m để đồ thị hàm số đi qua gốc toạ độ.
b) Tìm toạ độ của điểm mà đường thẳng luôn đi qua với mọi m.
ĐS: a) b) .
Bài 15. Cho 2 điểm A(1; –2), B(–4; 3).
a) Tìm hệ số góc của đường thẳng AB. b) Lập phương trình đường thẳng AB.
ĐS: a) b) .
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
BÀI TẬP ÔN CHƯƠNG II
Bài 1. Cho hai hàm số: và .
a) Vẽ đồ thị của hai hàm số đó trên cùng một hệ trục tọa độ Oxy.
b) Đường thẳng song song với trục Ox, cắt trục Oy tại điểm có tung độ bằng 6, cắt các đồ thị trên lần lượt ở A và B. Tìm tọa độ các điểm A và B. Tính chu vi và diện tích tam giác OAB.
ĐS: b) ; .
Bài 2. Cho hai hàm số và .
a) Vẽ đồ thị của hai hàm số đó trên cùng một hệ trục tọa độ Oxy.
b) Qua điểm (0; 2) vẽ đường thẳng song song với trục Ox, cắt các đồ thị trên lần lượt tại A và B. Chứng minh tam giác AOB là tam giác vuông và tính diện tích của tam giác đó.
Bài 3. Cho hàm số: (d).
a) Tìm các giá trị của m để hàm số đồng biến, nghịch biến.
b) Tìm các giá trị của m, biết rằng đường thẳng (d) đi qua điểm A(–1; 2). Vẽ đồ thị của hàm số với giá trị tìm được của m.
c) Chứng minh rằng khi m thay đổi thì các đường thẳng (d) luôn luôn đi qua một điểm cố định.
ĐS: b) c) .
Bài 4. Cho hàm số: .
a) Xác định m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 2.
b) Xác định m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2.
c) Xác định tọa độ giao điểm của hai đồ thị ứng với giá trị của m tìm được ở câu a, câu b.
Bài 5. Cho ba đường thẳng , và .
a) Vẽ ba đường thẳng đã cho trên cùng một hệ trục tọa độ Oxy.
b) Gọi giao điểm của hai đường thẳng là A, giao điểm của đường thẳng với hai đường thẳng theo thứ tự là B và C. Tìm tọa độ các điểm A, B, C.
c) Tam giác ABC là tam giác gì? Tính diện tích tam giác ABC.
Bài 6. Cho các hàm số sau: ; ; .
a) Vẽ đồ thị của các hàm số đã cho trên cùng một hệ trục tọa độ Oxy.
b) Gọi giao điểm của đường thẳng với đường thẳng và lần lượt là A và B. Tìm tọa độ các điểm A, B.
c) Tam giác AOB là tam giác gì? Vì sao? Tính diện tích tam giác AOB.
Bài 7. Cho hàm số: , .
a) Vẽ đồ thị của hai hàm số đã cho trên cùng một hệ trục tọa độ Oxy.
b) Gọi giao điểm của đường thẳng với trục Oy là A, giao điểm của đường thẳng với trục Ox là B, còn giao điểm của đường thẳng là C. Tam giác ABC là tam giác gì? Tìm tọa độ các điểm A, B, C.
c) Tính diện tích tam giác ABC.
Bài 8. Cho hai đường thẳng: và .
a) Vẽ đồ thị của các hàm số đã cho trên cùng một hệ trục tọa độ Oxy.
b) Gọi giao điểm của đường thẳng và với trục Oy lần lượt là A và B. Tìm tọa độ trung điểm I của đoạn AB.
c) Gọi J là giao điểm của hai đường thẳng và . Chứng minh tam giác OIJ là tam giác vuông. Tính diện tích của tam giác đó.
Bài 9. Cho đường thẳng (d): .
a) Xác định tọa độ giao điểm A và B của đường thẳng (d) với hai trục Ox, Oy. Tính khoảng cách từ điểm O(0; 0) đến đường thẳng (d).
b) Tính khoảng cách từ điểm C(0; –2) đến đường thẳng (d).
Bài 10. Tìm giá trị của k để ba đường thẳng sau đồng quy:
a) , ,
ĐS:
Bài 11. Cho hai đường thẳng: và .
a) Chứng minh rằng khi thì hai đường thẳng đã cho vuông góc với nhau.
b) Tìm tất cả các giá trị của m để hai đường thẳng đã cho vuông góc với nhau.
ĐS: b) .
Bài 12. Xác định hàm số trong mỗi trường hợp sau:
a) Khi , đồ thị hàm số cắt trục tung tại điểm có tung độ bằng .
b) Khi , đồ thị hàm số đi qua điểm A(–2; 3).
c) Đồ thị hàm số đi qua hai điểm M(1; 3) và N(–2; 6).
d) Đồ thị hàm số song song với đường thẳng và đi qua điểm .
ĐS: a) b) c) d) .
Bài 13. Cho đường thẳng: (d).
a) Viết phương trình đường thẳng song song với đường thẳng (d) và có tung độ gốc bằng 10.
b) Viết phương trình đường thẳng vuông góc với đường thẳng (d) và cắt trục Ox tại điểm có hoành độ bằng – 8.
c) Viết phương trình đường thẳng song song với đường thẳng (d) cắt trục Ox tại A, cắt trục Oy tại B và diện tích tam giác AOB bằng 8.
ĐS:
Bài 14. Cho hai đường thẳng: và . Tìm các giá trị của k để:
a) và cắt nhau. b) và cắt nhau tại một điểm trên trục tung.
c) và song song.
ĐS: a) b) c)
Bài 15. Cho hàm số . Tìm các giá trị của m, n để đường thẳng (d):
a) Đi qua các điểm A(1; –3) và B(–2; 3).
b) Cắt trục tung tại điểm có tung độ bằng , cắt trục hoành tại điểm có hoành độ .
c) Cắt đường thẳng .
d) Song song với đường thẳng .
I. PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
1. Khái niệm phương trình bậc nhất hai ẩn
Phương trình bậc nhất hai ẩn x, y là hệ thức dạng: (1)
trong đó a, b, c là các số đã biết (a 0 hoặc b 0).
Nếu thoả (1) thì cặp số đgl một nghiệm của phương trình (1).
Trong mặt phẳng toạ độ Oxy, mỗi nghiệm của (1) được biểu diễn bởi một điểm. Nghiệm được biểu diễn bởi điểm .
2. Tập nghiệm của phương trình bậc nhất hai ẩn
Phương trình bậc nhất hai ẩn luôn có vô số nghiệm. Tập nghiệm của nó được biểu diễn bởi đường thẳng (d).
Nếu a 0 và b 0 thì đường thẳng (d) là đồ thị của hàm số .
Nếu a 0 và b = 0 thì phương trình trở thành và đường thẳng (d) song song hoặc trùng với trục tung.
Nếu a = 0 và b 0 thì phương trình trở thành và đường thẳng (d) song song hoặc trùng với trục hoành.
Bài 18. Trong các cặp số (0; 4), (–1; 3), (1; 1), (2; 3), (4; 6), cặp số nào là nghiệm của phương trình:
a) b) c)
ĐS:
Bài 19. Tìm nghiệm tổng quát và vẽ đường thẳng biểu diễn tập nghiệm của nó:
a) b) c)
d) e) f)
ĐS:
Bài 20. Cho đường thẳng (d) có phương trình: . Tìm m để:
a) (d) song song với trục hoành. b) (d) song song với trục tung.
c) (d) đi qua gốc toạ độ. d) (d) đi qua điểm A(2; –1).
ĐS:
Bài 21. Tìm tất cả các nghiệm nguyên của phương trình:
a) b) c)
d) e) f)
ĐS: a) b) c) d)
e) f)
Bài 22. Tìm tất cả các nghiệm nguyên dương của phương trình:
a) b) c)
d) e)
ĐS: a) b)
c) ; ; ; ; ; ;
d) e) không có nghiệm nguyên dương.
II. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
1. Khái niệm hệ hai phương trình bậc nhất hai ẩn
Cho hệ hai phương trình bậc nhất hai ẩn:
(I)
Nếu hai phương trình trên có nghiệm chung thì đgl một nghiệm của hệ (I).
Nếu hai phương trình trên không có nghiệm chung thì ta nói hệ (I) vô nghiệm.
Giải hệ phương trình là tìm tập nghiệm của nó.
2. Minh hoạ hình học tập nghiệm của hệ hai phương trình bậc nhất hai ẩn
Tập nghiệm của hệ phương trình (I) được biểu diễn bởi tập hợp các điểm chung của hai đường thẳng và .
Nếu cắt thì hệ (I) có một nghiệm duy nhất.
Nếu // thì hệ (I) vô nghiệm.
Nếu thì hệ (I) có vô số nghiệm.
3. Hệ phương trình tương đương
Hai hệ phương trình đgl tương đương nếu chúng có cùng tập nghiệm.
Bài 1. Đoán nhận số nghiệm của mỗi hệ phương trình sau và giải thích vì sao:
a) b) c)
d) e) f)
ĐS: a) 1 nghiệm b) 1 nghiệm c) 1 nghiệm d) 1 nghiệm e) vô nghiệm f) vô số nghiệm.
Bài 2. Bằng đồ thị chứng tỏ các hệ phương trình sau luôn có nghiệm duy nhất với bất kì giá trị nào của a:
a) b)
Bài 3. Bằng đồ thị chứng tỏ hệ phương trình:
a) Có nghiệm duy nhất với . b) Vô nghiệm với .
Bài 4. Bằng đồ thị chứng tỏ hệ phương trình:
a) Có vô số nghiệm với . b) Vô nghiệm với .
Bài 5. Xác định m để hệ phương trình sau có nghiệm duy nhất:
a)
ĐS: a)
Bài 6. Xác định a để hai hệ phương trình sau là tương đương:
a) và b) và
ĐS: a) b)
III. GIẢI HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
1. Phương pháp thế
Bước 1: Từ một phương trình của hệ đã cho (coi là PT (1)), ta biểu diễn một ẩn theo ẩn kia, rồi thế vào phương trình thứ hai (PT (2)) để được một phương trình mới (chỉ còn một ẩn).
Bước 2: Dùng phương trình mới ấy để thay thế cho PT (2) trong hệ (PT (1) cũng thường được thay thế bởi hệ thức biểu diễn một ẩn theo ẩn kia).
2. Phương pháp cộng đại số
Bước 1: Cộng hay trừ từng vế hai phương trình của hệ phương trình đã cho để được một phương trình mới.
Bước 2: Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ (giữ nguyên phương trình kia).
Chú ý:
Trong phương pháp cộng đại số, trước khi thực hiện bước 1, có thể nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ là bằng nhau hoặc đối nhau.
Đôi khi ta có thể dùng phương pháp đặt ẩn phụ để đưa hệ phương trình đã cho về hệ phương trình với hai ẩn mới, rồi sau đó sử dụng một trong hai phương pháp giải ở trên.
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
Bài 1. Giải các hệ phương trình sau bằng phương pháp thế:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f)
Bài 2. Giải các hệ phương trình sau:
a) b)
c) d)
e) f)
ĐS: a) vô số nghiệm b) vô nghiệm c) vô nghiệm d) e) vô nghiệm f)
Bài 3. Giải các hệ phương trình sau:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e)
f)
Bài 4. Giải và biện luận các hệ phương trình sau:
a) b)
ĐS:
Bài 5. Tìm m nguyên để hệ phương trình sau có nghiệm duy nhất là nghiệm nguyên:
a) b)
ĐS: a) b)
Bài 6. Giải các hệ phương trình sau bằng phương pháp cộng đại số:
a) b) c)
d) e) f)
ĐS: a) b) c) d) e) f)
Bài 7. Giải các hệ phương trình sau:
a) b) c)
d) e) f)
ĐS: a) vô nghiệm b) vô số nghiệm c) vô nghiệm d)
e) f)
Bài 8. Xác định a và b để đồ thị của hàm số đi qua hai điểm A và B trong mỗi trường hợp sau:
a) A(2; 1), B(1; 2) b) A(1; 3), B(3; 2) c) A(1; –3), B(2; 3)
d) A(–1; 1), B(2; 3) e) A(2; –2), B(–1; –2) f) A(1; 0), B(1; –6)
ĐS: a) b) c) d) e) f)
Bài 9. Chứng tỏ rằng khi m thay đổi, các đường thẳng có phương trình sau luôn đi qua một điểm cố định:
a) b)
ĐS: a) b)
IV. GIẢI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
Bước 1: Lập hệ phương trình:
+ Chọn hai ẩn và đặt điều kiện thích hợp cho chúng.
+ Biểu diễn các đại lượng chưa biết theo các ẩn và các đại lượng đã biết.
+ Lập hai phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải hệ hai phương trình nói trên.
Bước 3: Trả lời: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán (thoả mãn điều kiện ở bước 1) và kết luận.
Dạng 1: Toán về quan hệ giữa các số
Bài 1. Tìm một số tự nhiên có hai chữ số sao cho tổng của hai chữ số của nó bằng 11, nếu đổi chỗ hai chữ số hàng chục và hàng đơn vị cho nhau thì số đó tăng thêm 27 đơn vị.
ĐS: 47.
Bài 2. Tìm một số tự nhiên có ba chữ số sao cho tổng các chữ số bằng 17, chữ số hàng chục là 4, nếu đổi chỗ các chữ số hàng trăm và hàng đơn vị cho nhau thì số đó giảm đi 99 đơn vị.
ĐS: 746.
Bài 3. Tìm một số tự nhiên có ba chữ số chia hết cho 11, biết rằng khi chia số đó cho 11 thì được thương bằng tổng các chữ số của số bị chia.
ĐS: 198.
Bài 4. Tìm hai số biết rằng tổng của hai số đó bằng 17 đơn vị. Nếu số thứ nhất tăng thêm 3 đơn vị, số thứ hai tăng thêm 2 đơn vị thì tích của chúng bằng 105 đơn vị.
ĐS: 12 và 5 hoặc 4 và 13.
Dạng 2: Toán làm chung công việc
Bài 1. Hai vòi nước cùng chảy vào một bể sau 4 giờ 48 phút thì đầy bể. Nếu vòi I chảy trong 4 giờ, vòi II chảy trong 3 giờ thì cả hai vòi chảy được bể. Tính thời gian để mỗi vòi chảy riêng một mình đầy bể.
ĐS: 8 giờ và 12 giờ.
Bài 2. Để hoàn thành một công việc, hai tổ phải làm chung trong 6 giờ. Sau 2 giờ làm chung thì tổ II được điều đi làm việc khác, tổ I đã hoàn thành công việc còn lại trong 10 giờ. Hỏi nếu mỗi tổ làm riêng thì sau bao lâu sẽ xong công việc đó.
ĐS:
Bài 3. Hai lớp 9A và 9B cùng tham gia lao động vệ sinh sân trường thì công việc được hoàn thành sau 1 giờ 20 phút. Nếu mỗi lớp chia nhau làm nửa công việc thì thời gian hoàn tất là 3 giờ. Hỏi nếu mỗi lớp làm một mình thì phải mất bao nhiêu thời gian.
ĐS:
Dạng 3: Toán chuyển động
Bài 1. Một ô tô đi từ tỉnh A đến tỉnh B với một vận tốc đã định. Nếu vận tốc tăng thêm 20 km/h thì thời gian đi được sẽ giảm 1 giờ. Nếu vận tốc giảm bớt 10 km/h thì thời gian đi sẽ tăng thêm 1 giờ. Tính vận tốc và thời gian dự định của ô tô.
ĐS: 40 km/h; 3 giờ.
Bài 2. Hai địa điểm A và B cách nhau 85 km. Cùng lúc, một canô đi xuôi dòng thừ A đến B và một canô đi ngược dòng từ B đến A, sau 1 giờ 40 phút thì gặp nhau. Tính vận tốc thật của mỗi canô, biết rằng vận tốc canô đi xuôi dòng lớn hơn vận tốc canô đi ngược dòng là 9 km/h và vận tốc dòng nước là 3 km/h (vận tốc thật của các canô không đổi).
ĐS: 27 km/h; 24 km/h.
Bài 3. Quãng đường AB dài 200 km. Cùng lúc một xe máy đi từ A đến B và một ô tô đi từ B đến A. Xe máy và ô tô gặp nhau tại điểm C cách A 120 km. Nếu xe máy khởi hành sau ô tô 1 giờ thì gặp nhau tại điểm D cách C 24 km. Tính vận tốc của ô tô và xe máy.
ĐS: 60 km/h; 40 km/h.
Bài 4. Một xe khách và một xe du lịch khởi hành đồng thời từ A để đi đến B. Biết vận tốc của xe du lịch lớn hơn vận tốc xe khách là 20 km/h. Do đó xe du lịch đến B trước xe khách 50 phút. Tính vận tốc mỗi xe, biết quãng đường AB dài 100 km.
ĐS:
Bài 5. Một người đi xe máy từ A đến B. Vì có việc gấp phải đến B trước thời gian dự định là 45 phút nên người đó tăng vận tốc lên mỗi giờ 10 km. Tính vận tốc mà người đó dự định đi, biết quãng đờng AB dài 90 km.
ĐS:
Bài 6. Một người đi xe máy từ A tới B. Cùng một lúc một người khác cũng đi xe máy từ B tới A với vận tốc bằng vận tốc của người thứ nhất. Sau 2 giờ hai người gặp nhau. Hỏi mỗi người đi cả quãng đường AB hết bao lâu?
ĐS:
Bài 7. Một canô ngược dòng từ bến A đến bến B với vận tốc 20 km/h, sau đó lại xuôi từ bến B trở về bến A. Thời gian canô ngược dòng từ A đến B nhiều hơn thời gian canô xuôi dòng từ B trở về A là 2 giờ 40 phút. Tính khoảng cách giữa hai bến A và B. Biết vận tốc dòng nước là 5 km/h, vận tốc riêng của canô lúc xuôi dòng và lúc ngược dòng bằng nhau.
Dạng 4: Toán có nội dung hình học
Bài 1. Một tam giác có chiều cao bằng cạnh đáy. Nếu chiều cao tăng thêm 3 dm và cạnh đáy giảm đi 3 dm thì diện tích của nó tăng thêm 12 . Tính chiều cao và cạnh đáy của tam giác.
ĐS: Cạnh đáy 20 dm, chiều cao 15 dm.
Bài 2. Một khu vườn hình chữ nhật có chu vi bằng 48 m. Nếu tăng chiều rộng lên bốn lần và chiều dài lên ba lần thì chu vi của khu vườn sẽ là 162 m. Hãy tìm diện tích của khu vườn ban đầu.
ĐS:
Bài 3. Người ta muốn làm một chiếc thùng tôn hình trụ không nắp có bán kính đáy là 25 cm, chiều cao của thùng là 60 cm. Hãy tính diện tích tôn cần dùng (không kể mép nối). Thùng tôn đó khi chứa đầy nước thì thể tích nước chứa trong thùng là bao nhiêu.
ĐS:
Bài 4. Một thửa ruộng hình chữ nhật có diện tích là 100 m2. Tính độ dài các cạnh của thửa ruộng. Biết rằng nếu tăng chiều rộng của thửa ruộng lên 2 m và giảm chiều dài của thửa ruộng đi 5 m thì diện tích của thửa ruộng sẽ tăng thêm 5 m2.
ĐS:
Dạng 5: Các dạng khác
Bài 1. Hai giá sách có 450 cuốn. Nếu chuyển 50 cuốn từ giá thứ nhất sang giá thứ hai thì số sách trên giá thứ hai bằng số sách ở giá thứ nhất. Tính số sách trên mỗi giá.
ĐS: 300; 150.
Bài 2. Hai xí nghiệp theo kế hoạch phải làm tổng cộng 360 dụng cụ. Thực tế, xí nghiệp I vượt mức kế hoạch 10%, xí nghiệp II vượt mức kế hoạch 15%, do đó cả hai xí nghiệp đã làm được 404 dụng cụ. Tính số dụng cụ mỗi xí nghiệp phải làm theo kế hoạch.
ĐS:
Bài 3. Một công nhân dự định làm 72 sản phẩm trong một thời gian đã định. Nhng thực tế xí nghiệp lại giao 80 sản phẩm. Mặc dù người đó mỗi giờ đã làm thêm một sản phẩm so với dự kiến, nhưng thời gian hoàn thành công việc vẫn chậm so với dự định là 12 phút. Tính số sản phẩm dự kiến làm trong 1 giờ của người đó. Biết mỗi giờ người đó làm không quá 20 sản phẩm.
ĐS:
Bài 4. Theo kế hoạch, một công nhân phải hoàn thành 60 sản phẩm trong thời gian nhất định. Nhưng do cải tiến kĩ thuật nên mỗi giờ người công nhân đó đã làm thêm được 2 sản phẩm. Vì vậy, chẳng những hoàn thành kế hoạch sớm hơn dự định 30 phút mà còn vượt mức 3 sản phẩm. Hỏi theo kế hoạch, mỗi giờ người đó phải làm bao nhiêu sản phẩm.
ĐS:
Bài 5. Một đội công nhân hoàn thành một công việc với mức 420 ngày công thợ (nghĩa là nếu công việc đó chỉ có một người làm thì phải mất 420 ngày). Hãy tính số công nhân của đội biết rằng nếu đội tăng thêm 5 người thì số ngày để đội hoàn thành công việc sẽ giảm đi 7 ngày.
ĐS:
Bài 6. Một đội xe vận tải phải vận chuyển 28 tấn hàng đến một địa điểm qui định. Vì trong đội có 2 xe phải điều đi làm việc khác nên mỗi xe phải chở thêm 0,7 tấn hàng nữa. Tính số xe của đội lúc đầu.
ĐS:
Bài 7. Người ta dự kiến trồng 300 cây trong một thời gian đã định. Do điều kiện thuận lợi nên mỗi ngày trồng được nhiều hơn 5 cây so với dự kiến, vì vậy đã trồng xong 300 cây ấy trước 3 ngày. Hỏi dự kiến ban đầu mỗi ngày trồng bao nhiêu cây? (Giả sử số cây dự kiến trồng mỗi ngày là bằng nhau).
ĐS:
Nhóm tài liệu word đẹp cả hình thức nội dung (Tên nhóm :TOÁN WORD THCS VÀ THPT ) link nhóm :https://www.facebook.com/groups/844555165941102/?ref=share
BÀI TẬP ÔN CHƯƠNG III
Bài 1. Giải các hệ phương trình sau:
a) b) c)
d) e) f)
Bài 2. Giải các hệ phương trình sau:
a) b) c)
d) e) f)
Bài 3. Giải và biện luận các hệ phương trình sau:
a) b) c)
d) e) f)
Bài 4. Trong các hệ phương trình sau hãy:
i) Giải và biện luận. ii) Tìm m Z để hệ có nghiệm duy nhất là nghiệm nguyên.
a) b) c)
Bài 5. Trong các hệ phương trình sau hãy:
i) Giải và biện luận.
ii) Khi hệ có nghiệm (x; y), tìm hệ thức giữa x, y độc lập đối với m.
a) b) c)
Bài 6. Giải các hệ phương trình sau:
a) b) c)
Bài 7. Một khu vườn hình chữ nhật, chiều dài lớn hơn chiều rộng 5 m, diện tích bằng 300 m2. Tính chiều dài và chiều rộng của khu vườn.
ĐS:
Bài 8. Cho một hình chữ nhật. Nếu tăng độ dài mỗi cạnh của nó lên 1 cm thì diện tích của hình chữ nhật sẽ tăng thêm 13 cm2. Nếu giảm chiều dài đi 2 cm, chiều rộng đi 1 cm thì diện tích của hình chữ nhật sẽ giảm 15 cm2. Tính chiều dài và chiều rộng của hình chữ nhật đã cho.
ĐS:
Bài 9. Một mảnh đất hình chữ nhật có chu vi 80 m. Nếu tăng chiều dài thêm 3 m, chiều rộng thêm 5 m thì diện tích của mảnh đất tăng thêm 195 m2. Tính chiều dài, chiều rộng của mảnh đất.
ĐS:
Bài 10. Một tam giác có chiều cao bằng cạnh đáy. Nếu chiều cao giảm đi 2 dm và cạnh đáy tăng thêm 3 dm thì diện tích của nó giảm đi 14 dm2. Tính chiều cao và cạnh đáy của tam giác.
ĐS:
Bài 11. Hai xe máy khởi hành cùng một lúc từ hai tỉnh A và B cách nhau 90 km, đi ngược chiều và gặp nhau sau 1,2 giờ (xe thứ nhất khởi hành từ A, xe thứ hai khởi hành từ B). Tìm vận tốc của mỗi xe. Biết rằng thời gian để xe thứ nhất đi hết quãng đường AB ít hơn thời gian để xe thứ hai đi hết quãng đường AB là 1 giờ.
ĐS:
Bài 12. Một xe lửa đi từ ga Hà Nội vào ga Trị Bình (Quảng Ngãi). Sau đó 1 giờ, một xe lửa khác đi từ ga Trị Bình ra ga Hà Nội với vận tốc lớn hơn vận tốc của xe thứ nhất là 5 km/h. Hai xe gặp nhau tại một ga ở chính giữa quãng đường. Tìm vận tốc của mỗi xe lửa, biết quãng đường sắt Hà Nội – Trị Bình dài 900km.
ĐS:
Bài 13. Hai ôtô khởi hành cùng một lúc trên quãng đường từ A đến B dài120 km. Mỗi giờ ôtô thứ nhất chạy nhanh hơn ôtô thứ hai là 10 km nên đến B trớc ôtô thứ hai là giờ. Tính vận tốc của mỗi ôtô?
ĐS:
Bài 14. Một canô xuôi dòng từ bến sông A đến bến sông B cách nhau 24 km; cùng lúc đó, cũng từ A về B một bè nứa trôi với vận tốc dòng nước là 4 km/h. Khi đến B canô quay lại ngay và gặp bè nứa tại địa điểm C cách A là 8 km. Tính vận tốc thực của canô.
ĐS:
Bài 15. Cùng một thời điểm, một chiếc ôtô XA xuất phát từ thành phố A về hướng thành phố B và một chiếc khác XB xuất phát từ thành phố B về hướng thành phố A. Chúng chuyển động với vận tốc riêng không đổi và gặp nhau lần đầu tại một điểm cách A là 20 km. Cả hai chiéc xe sau khi đến B và A tương ứng, lập tức quay trở lại và chúng gặp nhau lần thứ hai tại một điểm C. Biết thời gian xe XB đi từ C đến B là 10 phút và thời gian giữa hai lần gặp nhau là 1 giờ. Hãy tính vận tốc của từng chiếc ôtô.
ĐS:
Bài 16. Một xuồng máy xuôi dòng sông 30 km và ngược dòng 28 km hết một thời gian bằng thời gian mà xuồng đi 59,5 km trên mặt hồ yên lặng. Tính vận tốc của xuồng khi đi trên hồ biết rằng vận tốc của nước chảy trên sông là 3 km/h.
ĐS:
Bài 17. Một xe máy đi từ A đến B trong một thời gian dự định. Nếu vận tốc tăng thêm 14 km/ giờ thì đến sớm 2 giờ, nếu giảm vận tốc đi 4 km/ giờ thì đến muộn 1 giờ. Tính vận tốc dự định và thời gian dự định.
ĐS:
Bài 18. Một tàu thuỷ chạy trên khúc sông dài 120 km, cả đi và về mất 6 giờ 45 phút. Tính vận tốc của tàu thuỷ khi nước yên lặng, biết rằng vận tốc của dòng nước là 4 km/ h.
ĐS:
Bài 19. Một canô đi xuôi dòng 48 km rồi đi ngược dòng 22 km. Biết rằng thời gian đi xuôi dòng lớn hơn thời gian đi ngược dòng là 1 giờ và vận tốc đi xuôi lớn hơn vận tốc đi ngược là 5 km/h. Tính vận tốc
 
















