GVG YÊN THÀNH

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Cao Xuân Hùng (trang riêng)
Ngày gửi: 20h:05' 15-10-2019
Dung lượng: 215.0 KB
Số lượt tải: 13
Nguồn:
Người gửi: Cao Xuân Hùng (trang riêng)
Ngày gửi: 20h:05' 15-10-2019
Dung lượng: 215.0 KB
Số lượt tải: 13
Số lượt thích:
0 người
PHÒNG GD&ĐT YÊN THÀNH
BÀI KIỂM TRA NĂNG LỰC GIÁO VIÊN
MÔN: TOÁN
Thời gian làm bài: 120 phút
Câu 1. (4 điểm)
Cho phương trình:
Đồng chí hãy:
a) Giải phương trình trên bằng nhiều phương pháp?
b) Hướng dẫn học sinh giải phương trình trên bằng 2 phương pháp?
Câu 2. (4,0 điểm)
Trong đề thi học sinh giỏi khối lớp 9 có bài toán:
Chứng minh rằng: với .
Khá nhiều học sinh đã giải bài toán như sau:
Áp dụng bất đẳng thức Côsi cho 2 số không âm a và 2b ta có:
(1) Dấu “ =” xảy ra khi a = 2b.
Tương tự:
(2) Dấu “ =” xảy ra khi a = 2c.
(3) Dấu “ =” xảy ra khi a = 2d.
(4) Dấu “ =” xảy ra khi a = 2e.
Cộng (1) , (2) , (3) , (4) ta có:
.
Dấu “ =” xảy ra khi a = 2b = 2c = 2d = 2e. ĐPCM
a) Theo đồng chí học sinh giải bài toán như vậy có đúng không? Hãy giải thích?
b) Đồng chí hãy giải và hướng dẫn học sinh giải bài toán trên?
Câu 3. (4,0 điểm)
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R). Hai đường cao của tam giác ABC là BD và CE.
Chứng minh rằng: OADE
Đồng chí hãy giải và định hướng (gợi ý) cho học sinh một vài cách vẽ đường phụ để chứng minh bài toán trên.
Câu 4. (3,0 điểm)
Đồng chí giải phương trình sau:
Câu 5. (5,0 điểm)
Đồng chí hãy nêu các dấu hiệu đặc trưng của phương pháp dạy và học tích cực?
- - - Hết - - -
(Cán bộ coi thi không giải thích gì thêm )
PHÒNG GD&ĐT YÊN THÀNH
BÀI KIỂM TRA NĂNG LỰC GIÁO VIÊN
MÔN: TOÁN
Thời gian làm bài: 120 phút
HƯỚNG DẪN CHẤM VÀ BIỂU ĐIỂM
(Hướng dẫn này có 03 trang)
Câu
Nội dung
Điểm
Câu 1
4.0
Giáo viên giải đúng từ 2 phương pháp trở lên cho điểm tối đa
2,0
a)
Cách 1:
Điều kiện: -13 ( x ( 7
( x + 13 = 11 - x + 4
( ĐK x ( -1
( x2 +2x + 1 = 28 - 4x
(
( ( (loại)
hoặc x = 3 (thoả mãn)
Cách 2:
Đặt ; ta có hệ phương trình:
(loại)
Thay , ta có:
Vậy phương trình đã cho có nghiệm
b)
Từ 2 cách giải ở câu a giáo viên nêu được hệ thống câu hỏi phù hợp, logic thì cho điểm tối đa.
2,0
Câu 2
5 đ
a)
Học sinh giải như trên là chưa đúng, vì theo cách giải trên thì bài toán chỉ thoả mãn khi còn khi thì bài toán vẫn chưa được chứng minh.
1
b)
3
Ta có thể bài toán như sau:
1.5
Ta có:
+++
+++( luôn đúng)
Đẳng thức xảy ra khi :
Vậy với
Đẳng thức xảy ra khi :
Giáo viên hướng dẫn, gợi ý bằng hệ thống câu hỏi phù hợp, logic thì cho điểm tối đa.
1.5
Câu 3
4đ
0.5
Chứng minh:
Kẻ tiếp tuyến Ax ta có OAAx (1)
0.25
Tứ giác BCDE nội tiếp nên ( góc ngoài bằng góc trong ở đỉnh đối diện) (*)
0,25
Mặt khác (**)
0.25
Từ (*), (**) suy ra mà hai góc này
BÀI KIỂM TRA NĂNG LỰC GIÁO VIÊN
MÔN: TOÁN
Thời gian làm bài: 120 phút
Câu 1. (4 điểm)
Cho phương trình:
Đồng chí hãy:
a) Giải phương trình trên bằng nhiều phương pháp?
b) Hướng dẫn học sinh giải phương trình trên bằng 2 phương pháp?
Câu 2. (4,0 điểm)
Trong đề thi học sinh giỏi khối lớp 9 có bài toán:
Chứng minh rằng: với .
Khá nhiều học sinh đã giải bài toán như sau:
Áp dụng bất đẳng thức Côsi cho 2 số không âm a và 2b ta có:
(1) Dấu “ =” xảy ra khi a = 2b.
Tương tự:
(2) Dấu “ =” xảy ra khi a = 2c.
(3) Dấu “ =” xảy ra khi a = 2d.
(4) Dấu “ =” xảy ra khi a = 2e.
Cộng (1) , (2) , (3) , (4) ta có:
.
Dấu “ =” xảy ra khi a = 2b = 2c = 2d = 2e. ĐPCM
a) Theo đồng chí học sinh giải bài toán như vậy có đúng không? Hãy giải thích?
b) Đồng chí hãy giải và hướng dẫn học sinh giải bài toán trên?
Câu 3. (4,0 điểm)
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R). Hai đường cao của tam giác ABC là BD và CE.
Chứng minh rằng: OADE
Đồng chí hãy giải và định hướng (gợi ý) cho học sinh một vài cách vẽ đường phụ để chứng minh bài toán trên.
Câu 4. (3,0 điểm)
Đồng chí giải phương trình sau:
Câu 5. (5,0 điểm)
Đồng chí hãy nêu các dấu hiệu đặc trưng của phương pháp dạy và học tích cực?
- - - Hết - - -
(Cán bộ coi thi không giải thích gì thêm )
PHÒNG GD&ĐT YÊN THÀNH
BÀI KIỂM TRA NĂNG LỰC GIÁO VIÊN
MÔN: TOÁN
Thời gian làm bài: 120 phút
HƯỚNG DẪN CHẤM VÀ BIỂU ĐIỂM
(Hướng dẫn này có 03 trang)
Câu
Nội dung
Điểm
Câu 1
4.0
Giáo viên giải đúng từ 2 phương pháp trở lên cho điểm tối đa
2,0
a)
Cách 1:
Điều kiện: -13 ( x ( 7
( x + 13 = 11 - x + 4
( ĐK x ( -1
( x2 +2x + 1 = 28 - 4x
(
( ( (loại)
hoặc x = 3 (thoả mãn)
Cách 2:
Đặt ; ta có hệ phương trình:
(loại)
Thay , ta có:
Vậy phương trình đã cho có nghiệm
b)
Từ 2 cách giải ở câu a giáo viên nêu được hệ thống câu hỏi phù hợp, logic thì cho điểm tối đa.
2,0
Câu 2
5 đ
a)
Học sinh giải như trên là chưa đúng, vì theo cách giải trên thì bài toán chỉ thoả mãn khi còn khi thì bài toán vẫn chưa được chứng minh.
1
b)
3
Ta có thể bài toán như sau:
1.5
Ta có:
+++
+++( luôn đúng)
Đẳng thức xảy ra khi :
Vậy với
Đẳng thức xảy ra khi :
Giáo viên hướng dẫn, gợi ý bằng hệ thống câu hỏi phù hợp, logic thì cho điểm tối đa.
1.5
Câu 3
4đ
0.5
Chứng minh:
Kẻ tiếp tuyến Ax ta có OAAx (1)
0.25
Tứ giác BCDE nội tiếp nên ( góc ngoài bằng góc trong ở đỉnh đối diện) (*)
0,25
Mặt khác (**)
0.25
Từ (*), (**) suy ra mà hai góc này
 
















